首页 > 最新文献

Journal of Non-Crystalline Solids: X最新文献

英文 中文
Dissolution rates of borophosphate glasses in deionized water and in simulated body fluid 硼磷酸盐玻璃在去离子水和模拟体液中的溶解速率
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100181
Parker T. Freudenberger, Rebekah L. Blatt, Richard K. Brow

Particles of borophosphate glasses with the nominal molar compositions 16Na2O-(24-y)CaO-ySrO-xB2O3-(60-x)P2O5 (mol%), where 0 ≤ x ≤ 60 and y = 0, 12, and 24, were reacted in deionized water and in simulated body fluid (SBF) at 37 °C. For the dissolution experiments in water, the pH of the solution at the conclusion of the experiments increased systematically, from 2.1 to 9.5, for y = 0 glasses when ‘x’ increased from 0 to 60. The reaction rates over the first 8–24 h of dissolution in both SBF and deionized water followed linear kinetics, with reaction rates dependent on glass composition. For glass particles in SBF, replacing P2O5 with up to 20 mol% B2O3 decreased the dissolution rate (fraction dissolved) by two orders of magnitude, from 7.0 × 10−3 h−1 for x = 0 to 2.0 × 10−5 h−1 for x = 20. Further replacement of P2O5 by B2O3 increased dissolution rates by three orders of magnitude, to 2.3 × 10−2 h−1 at x = 60. The compositional dependence of the dissolution rates is explained by changes in the glass structure, with the most durable glasses possessing the greatest fraction of tetrahedral borophosphate sites in the glass network. Crystalline brushite was detected on Ca-glasses with 35 and 40 mol% B2O3, but the dominant precipitation phase on both the Ca- and Sr-glasses is an x-ray amorphous material constituted from orthophosphate and pyrophosphate anions.

标称摩尔组成为16Na2O-(24-y)CaO-ySrO-xB2O3-(60-x)P2O5(mol%),其中0≤x≤60,y=0、12和24的硼磷酸盐玻璃颗粒在去离子水中和模拟体液(SBF)中在37°C下反应。对于在水中的溶解实验,当“x”从0增加到60时,y=0玻璃在实验结束时溶液的pH值系统地从2.1增加到9.5。SBF和去离子水中溶解的前8–24小时的反应速率遵循线性动力学,反应速率取决于玻璃成分。对于SBF中的玻璃颗粒,用高达20 mol%的B2O3代替P2O5将溶解速率(溶解部分)降低了两个数量级,从7.0×10−3 h−1(x=0)降低到2.0×10−5 h−1,x=20。B2O3进一步取代P2O5使溶解速率增加了三个数量级,在x=60时达到2.3×10−2 h−1。溶解速率的组成依赖性可以通过玻璃结构的变化来解释,最耐用的玻璃在玻璃网络中拥有最多的四面体硼磷酸盐位点。在含有35和40mol%B2O3的Ca玻璃上检测到结晶的刷石,但Ca和Sr玻璃上的主要沉淀相是由正磷酸盐和焦磷酸盐阴离子组成的x射线无定形材料。
{"title":"Dissolution rates of borophosphate glasses in deionized water and in simulated body fluid","authors":"Parker T. Freudenberger,&nbsp;Rebekah L. Blatt,&nbsp;Richard K. Brow","doi":"10.1016/j.nocx.2023.100181","DOIUrl":"10.1016/j.nocx.2023.100181","url":null,"abstract":"<div><p>Particles of borophosphate glasses with the nominal molar compositions 16Na<sub>2</sub>O-(24-y)CaO-ySrO-xB<sub>2</sub>O<sub>3</sub>-(60-x)P<sub>2</sub>O<sub>5</sub> (mol%), where 0 ≤ x ≤ 60 and y = 0, 12, and 24, were reacted in deionized water and in simulated body fluid (SBF) at 37 °C. For the dissolution experiments in water, the pH of the solution at the conclusion of the experiments increased systematically, from 2.1 to 9.5, for y = 0 glasses when ‘x’ increased from 0 to 60. The reaction rates over the first 8–24 h of dissolution in both SBF and deionized water followed linear kinetics, with reaction rates dependent on glass composition. For glass particles in SBF, replacing P<sub>2</sub>O<sub>5</sub> with up to 20 mol% B<sub>2</sub>O<sub>3</sub> decreased the dissolution rate (fraction dissolved) by two orders of magnitude, from 7.0 × 10<sup>−3</sup> h<sup>−1</sup> for x = 0 to 2.0 × 10<sup>−5</sup> h<sup>−1</sup> for x = 20. Further replacement of P<sub>2</sub>O<sub>5</sub> by B<sub>2</sub>O<sub>3</sub> increased dissolution rates by three orders of magnitude, to 2.3 × 10<sup>−2</sup> h<sup>−1</sup> at x = 60. The compositional dependence of the dissolution rates is explained by changes in the glass structure, with the most durable glasses possessing the greatest fraction of tetrahedral borophosphate sites in the glass network. Crystalline brushite was detected on Ca-glasses with 35 and 40 mol% B<sub>2</sub>O<sub>3</sub>, but the dominant precipitation phase on both the Ca- and Sr-glasses is an x-ray amorphous material constituted from orthophosphate and pyrophosphate anions.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100181"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41321287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Erratum to indentation deformation in oxide glasses: Quantification, structural changes, and relation to cracking [Journal of Non crystalline solids:X 1C (2019) 100007] 氧化物玻璃压痕变形勘误表:量化、结构变化和与开裂的关系[非晶态固体杂志:X 1C(2019)100007]
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2022.100144
Kacper Januchta, Morten M. Smedskjaer
{"title":"Erratum to indentation deformation in oxide glasses: Quantification, structural changes, and relation to cracking [Journal of Non crystalline solids:X 1C (2019) 100007]","authors":"Kacper Januchta,&nbsp;Morten M. Smedskjaer","doi":"10.1016/j.nocx.2022.100144","DOIUrl":"10.1016/j.nocx.2022.100144","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100144"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44955614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjustment of refractive index of Ge-Ga-Se glass via Te addition for infrared-imaging applications 红外成像中Ge-Ga-Se玻璃折射率的Te调节
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100190
Hyun Kim, Il Jung Yoon, Yong Gyu Choi

After assessing compositional dependence of thermal and optical properties of Ge-Ga-Se glasses, we introduce Te, via replacing Se, into Ge25Ga5Se70 and Ge35Ga5Se60 (mol%) glasses in an attempt to enhance their refractive index. In the case of Se-deficient Ge35Ga5Se60 composition, vitrification is achieved for Te content up to 20 mol%. In the case of Se-sufficient Ge25Ga5Se70 composition, however, formation of bulk glass is realized only when Te content ranges from 25 to 45 mol%. Being proportional to Te content, refractive index of Ge25Ga5Se30Te40 glass is measured to approach 2.855 at 10 μm, which is far superior to that of any commercialized selenide glasses for infrared-imaging applications. This compositionally tailored Ge25Ga5Se30Te40 glass is further verified to be compatible with the conventional precision glass molding process, and infrared-imaging performance of the resulting molded lens is as excellent as the existing selenide-glass-based lenses.

在评估了Ge-Ga-Se玻璃的热性能和光学性能的组成依赖性后,我们通过取代Se将Te引入Ge25Ga5Se70和Ge35Ga5Se60(mol%)玻璃中,试图提高它们的折射率。在缺Se的Ge35Ga5Se60组合物的情况下,对于高达20mol%的Te含量实现玻璃化。然而,在Se充足的Ge25Ga5Se70组成的情况下,只有当Te含量在25至45mol%的范围内时,才能实现大块玻璃的形成。与Te含量成正比,Ge25Ga5Se30Te40玻璃在10μm时的折射率接近2.855,远优于任何商业化的红外成像硒化物玻璃。这种成分定制的Ge25Ga5Se30Te40玻璃被进一步验证为与传统的精密玻璃成型工艺兼容,并且所得成型透镜的红外成像性能与现有的硒化物玻璃基透镜一样优异。
{"title":"Adjustment of refractive index of Ge-Ga-Se glass via Te addition for infrared-imaging applications","authors":"Hyun Kim,&nbsp;Il Jung Yoon,&nbsp;Yong Gyu Choi","doi":"10.1016/j.nocx.2023.100190","DOIUrl":"10.1016/j.nocx.2023.100190","url":null,"abstract":"<div><p>After assessing compositional dependence of thermal and optical properties of Ge-Ga-Se glasses, we introduce Te, via replacing Se, into Ge<sub>25</sub>Ga<sub>5</sub>Se<sub>70</sub> and Ge<sub>35</sub>Ga<sub>5</sub>Se<sub>60</sub> (mol%) glasses in an attempt to enhance their refractive index. In the case of Se-deficient Ge<sub>35</sub>Ga<sub>5</sub>Se<sub>60</sub> composition, vitrification is achieved for Te content up to 20 mol%. In the case of Se-sufficient Ge<sub>25</sub>Ga<sub>5</sub>Se<sub>70</sub> composition, however, formation of bulk glass is realized only when Te content ranges from 25 to 45 mol%. Being proportional to Te content, refractive index of Ge<sub>25</sub>Ga<sub>5</sub>Se<sub>30</sub>Te<sub>40</sub> glass is measured to approach 2.855 at 10 μm, which is far superior to that of any commercialized selenide glasses for infrared-imaging applications. This compositionally tailored Ge<sub>25</sub>Ga<sub>5</sub>Se<sub>30</sub>Te<sub>40</sub> glass is further verified to be compatible with the conventional precision glass molding process, and infrared-imaging performance of the resulting molded lens is as excellent as the existing selenide-glass-based lenses.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100190"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44247989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Review on the structural analysis of fluoride-phosphate and fluoro-phosphate glasses” [Journal of Non Crystalline Solids:X 3C (2019) 100026] “氟-磷酸盐和氟-磷酸盐玻璃结构分析综述”的勘误[非结晶固体学报:X 3C (2019) 100026]
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100158
Doris Möncke , Hellmut Eckert
{"title":"Erratum to “Review on the structural analysis of fluoride-phosphate and fluoro-phosphate glasses” [Journal of Non Crystalline Solids:X 3C (2019) 100026]","authors":"Doris Möncke ,&nbsp;Hellmut Eckert","doi":"10.1016/j.nocx.2023.100158","DOIUrl":"10.1016/j.nocx.2023.100158","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100158"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43100075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses” [Journal of Non Crystalline Solids:X 2C (2019) 100025] “Ti掺杂锂铝硅酸盐玻璃中的TiO2(B)纳米晶体”勘误表[非结晶固体杂志:X 2C(2019)100025]
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2022.100146
A. Zandona , C. Patzig , B. Rüdinger , O. Hochrein , J. Deubener
{"title":"Erratum to “TiO2(B) nanocrystals in Ti-doped lithium aluminosilicate glasses” [Journal of Non Crystalline Solids:X 2C (2019) 100025]","authors":"A. Zandona ,&nbsp;C. Patzig ,&nbsp;B. Rüdinger ,&nbsp;O. Hochrein ,&nbsp;J. Deubener","doi":"10.1016/j.nocx.2022.100146","DOIUrl":"https://doi.org/10.1016/j.nocx.2022.100146","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100146"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50185727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “The irrelevance of phantom nuclei in crystallization kinetics: An integral equation approach” [Journal of Non Crystalline Solids:X 1C (2019) 100002] “结晶动力学中幻影核的不相关性:积分方程方法”勘误表[非结晶固体杂志:X 1C(2019)100002]
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2022.100141
Jonathan F. Stebbins
{"title":"Erratum to “The irrelevance of phantom nuclei in crystallization kinetics: An integral equation approach” [Journal of Non Crystalline Solids:X 1C (2019) 100002]","authors":"Jonathan F. Stebbins","doi":"10.1016/j.nocx.2022.100141","DOIUrl":"10.1016/j.nocx.2022.100141","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100141"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41427262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Pressure induced structural transformations in amorphous MgSiO3 and CaSiO3” [Journal of Non crystalline solids:X 3C (2019) 100024] “非晶态MgSiO3和CaSiO3的压力诱导结构转变”勘误表[非晶态固体杂志:X 3C(2019)100024]
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100154
Philip S. Salmon , Gregory S. Moody , YoshikiIshii , Keiron J. Pizzey , Annalisa Polidori , Mathieu Salanne , Anita Zeidler , Michela Buscemi , Henry E. Fischer , Craig L. Bull , Stefan Klotz , Richard Weber , Chris J. Benmore , Simon G. MacLeod
{"title":"Erratum to “Pressure induced structural transformations in amorphous MgSiO3 and CaSiO3” [Journal of Non crystalline solids:X 3C (2019) 100024]","authors":"Philip S. Salmon ,&nbsp;Gregory S. Moody ,&nbsp;YoshikiIshii ,&nbsp;Keiron J. Pizzey ,&nbsp;Annalisa Polidori ,&nbsp;Mathieu Salanne ,&nbsp;Anita Zeidler ,&nbsp;Michela Buscemi ,&nbsp;Henry E. Fischer ,&nbsp;Craig L. Bull ,&nbsp;Stefan Klotz ,&nbsp;Richard Weber ,&nbsp;Chris J. Benmore ,&nbsp;Simon G. MacLeod","doi":"10.1016/j.nocx.2023.100154","DOIUrl":"10.1016/j.nocx.2023.100154","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100154"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43869659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterising the glass transition temperature-structure relationship through a recurrent neural network 通过递归神经网络表征玻璃化转变温度-结构关系
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100185
Claudia Borredon , Luis A. Miccio , Silvina Cerveny , Gustavo A. Schwartz

Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m-dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.

定量构效关系(QSPR)是一种发现分子结构与其物理化学性质之间相关性的强大分析方法。玻璃化转变温度(Tg)是报道最多的性质之一,其表征对于调节材料的物理性质至关重要。在这项工作中,我们通过开发一个与分子玻璃形成剂的化学结构和玻璃化转变温度相关的递归神经网络(RNN),探索了机器学习在QSPR领域的应用。此外,我们执行了从RNN架构的最后一个隐藏层到m维Tg定向空间的化学嵌入。然后,我们测试了该模型来预测必需氨基酸和肽的玻璃化转变温度。这些结果非常有前景,可以为探索和设计新材料打开大门。
{"title":"Characterising the glass transition temperature-structure relationship through a recurrent neural network","authors":"Claudia Borredon ,&nbsp;Luis A. Miccio ,&nbsp;Silvina Cerveny ,&nbsp;Gustavo A. Schwartz","doi":"10.1016/j.nocx.2023.100185","DOIUrl":"https://doi.org/10.1016/j.nocx.2023.100185","url":null,"abstract":"<div><p>Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between the structure of a molecule and its physicochemical properties. The glass transition temperature (T<sub>g</sub>) is one of the most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network (RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an <em>m</em>-dimensional <em>T</em><sub><em>g</em></sub>-oriented space. Then, we test the model to predict the glass transition temperature of essential amino acids and peptides. The results are very promising and they can open the door for exploring and designing new materials.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100185"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50186007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glass-water interaction of a potassium phospho-aluminosilicate glass: Influence on mechanical behavior 磷酸钾铝硅酸盐玻璃的玻璃-水相互作用:对力学行为的影响
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100184
Emily M. Aaldenberg, Jared S. Aaldenberg, Timothy M. Gross

The mechanical behavior of a potassium phospho-aluminosilicate (KPAS) glass which is known to develop near-surface compressive stress profiles resulting from low-temperature water diffusion was explored. Region I of the macro-crack growth curve for the KPAS glass exhibited a steeper slope corresponding to a higher fatigue parameter, n, than soda-lime glass despite a lower n at crosshead speeds of 10−1–102 mm/min and no decrease in strength at lower rates in dynamic fatigue testing. The fatigue limit was easily observed in 50% RH air for the KPAS glass at velocities ~10−6–10−7 m/s giving rise to the delayed restart of cracks aged below the fatigue limit. Additionally, a 75% strength increase of the KPAS glass was measured after abraded specimens were aged for 100 days in humid air relative to specimens which were tested immediately following abrasion. The effects of swelling stress, surface stress relaxation, crack healing, and crack tip blunting are discussed.

研究了磷酸铝硅酸钾(KPAS)玻璃的力学行为,该玻璃因低温水扩散而产生近表面压应力分布。KPAS玻璃宏观裂纹扩展曲线的区域I显示出比钠钙玻璃更陡的斜率,对应于更高的疲劳参数n,尽管在10−1–102 mm/min的十字头速度下n较低,并且在动态疲劳测试中在较低速度下强度没有降低。KPAS玻璃在50%RH的空气中,以~10−6–10−7 m/s的速度很容易观察到疲劳极限,这导致疲劳极限以下老化裂纹的延迟重新启动。此外,相对于磨损后立即测试的试样,在潮湿空气中老化100天后,测量到KPAS玻璃的强度增加了75%。讨论了膨胀应力、表面应力松弛、裂纹愈合和裂纹尖端钝化的影响。
{"title":"Glass-water interaction of a potassium phospho-aluminosilicate glass: Influence on mechanical behavior","authors":"Emily M. Aaldenberg,&nbsp;Jared S. Aaldenberg,&nbsp;Timothy M. Gross","doi":"10.1016/j.nocx.2023.100184","DOIUrl":"10.1016/j.nocx.2023.100184","url":null,"abstract":"<div><p>The mechanical behavior of a potassium phospho-aluminosilicate (KPAS) glass which is known to develop near-surface compressive stress profiles resulting from low-temperature water diffusion was explored. Region I of the macro-crack growth curve for the KPAS glass exhibited a steeper slope corresponding to a higher fatigue parameter, <em>n</em>, than soda-lime glass despite a lower <em>n</em> at crosshead speeds of 10<sup>−1</sup>–10<sup>2</sup> mm/min and no decrease in strength at lower rates in dynamic fatigue testing. The fatigue limit was easily observed in 50% RH air for the KPAS glass at velocities ~10<sup>−6</sup>–10<sup>−7</sup> m/s giving rise to the delayed restart of cracks aged below the fatigue limit. Additionally, a 75% strength increase of the KPAS glass was measured after abraded specimens were aged for 100 days in humid air relative to specimens which were tested immediately following abrasion. The effects of swelling stress, surface stress relaxation, crack healing, and crack tip blunting are discussed.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100184"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43087622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Femtosecond laser direct-writing of perovskite nanocrystals in glasses 玻璃中钙钛矿纳米晶的飞秒激光直写
Q1 Physics and Astronomy Pub Date : 2023-06-01 DOI: 10.1016/j.nocx.2023.100182
Zihuai Su , Shengzhi Sun , Ye Dai , Xiaofeng Liu , Jianrong Qiu

Perovskite, particularly halide perovskite has drawn increasing attention in recent years because of its remarkable photoelectric properties. However, due to its susceptibility to environmental factors, its research and application have been hampered. Recently, perovskite nanocrystals (PNCs) have been precipitated inside glass by using thermal treatment or femtosecond laser irradiation, which results in unprecedented stability because they are protected by glass matrix. This article reviews the fundamental structure and properties of PNCs, the benefits of perovskite nanocrystals-glass composite structure, and the current state of research into the use of a femtosecond laser to induce PNCs in glass. We also discuss the recent progress in the use of perovskite nanocrystals-glass composite structure for stereo-holographic computing, micro-LEDs and optical storage.

钙钛矿,特别是卤化物钙钛矿,由于其优异的光电性能,近年来受到越来越多的关注。然而,由于其易受环境因素的影响,其研究和应用一直受到阻碍。近年来,钙钛矿纳米晶体(PNCs)通过热处理或飞秒激光照射在玻璃内沉淀,由于受到玻璃基质的保护,其稳定性达到了前所未有的水平。本文综述了PNCs的基本结构和性能,钙钛矿纳米晶体-玻璃复合结构的优点,以及利用飞秒激光在玻璃中诱导PNCs的研究现状。我们还讨论了钙钛矿纳米晶体-玻璃复合结构用于立体全息计算、微型LED和光存储的最新进展。
{"title":"Femtosecond laser direct-writing of perovskite nanocrystals in glasses","authors":"Zihuai Su ,&nbsp;Shengzhi Sun ,&nbsp;Ye Dai ,&nbsp;Xiaofeng Liu ,&nbsp;Jianrong Qiu","doi":"10.1016/j.nocx.2023.100182","DOIUrl":"10.1016/j.nocx.2023.100182","url":null,"abstract":"<div><p>Perovskite, particularly halide perovskite has drawn increasing attention in recent years because of its remarkable photoelectric properties. However, due to its susceptibility to environmental factors, its research and application have been hampered. Recently, perovskite nanocrystals (PNCs) have been precipitated inside glass by using thermal treatment or femtosecond laser irradiation, which results in unprecedented stability because they are protected by glass matrix. This article reviews the fundamental structure and properties of PNCs, the benefits of perovskite nanocrystals-glass composite structure, and the current state of research into the use of a femtosecond laser to induce PNCs in glass. We also discuss the recent progress in the use of perovskite nanocrystals-glass composite structure for stereo-holographic computing, micro-LEDs and optical storage.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"18 ","pages":"Article 100182"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44511365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Non-Crystalline Solids: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1