Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2022.100142
Jiri Jancalek , Stanislav Slang , Jiri Jemelka , Michal Kurka , Karel Palka , Miroslav Vlcek
We present comparison of spin-coated thin films prepared in traditional way from solution of dissolved bulk glass of particular ternary composition with films prepared from mixture of two separately dissolved binary bulk glasses targeting the same composition. The samples of five tie-line As-S-Se compositions ranging from As33S67 to As33Se67 were deposited in specular optical quality and thermal dependences of their optical properties, thickness, surface roughness, organic residual content, structure, and chemical resistance were studied. The deposited thin films were also structured by hot embossing at various temperatures to study the influence of source solution preparation on structuring process. Thin films prepared from solution mixtures show close physico-chemical properties to thin films prepared from solutions of corresponding bulk glasses.
{"title":"Preparation of ternary spin-coated thin films by mixing binary As-S and As-Se glass solutions","authors":"Jiri Jancalek , Stanislav Slang , Jiri Jemelka , Michal Kurka , Karel Palka , Miroslav Vlcek","doi":"10.1016/j.nocx.2022.100142","DOIUrl":"10.1016/j.nocx.2022.100142","url":null,"abstract":"<div><p>We present comparison of spin-coated thin films prepared in traditional way from solution of dissolved bulk glass of particular ternary composition with films prepared from mixture of two separately dissolved binary bulk glasses targeting the same composition. The samples of five tie-line As-S-Se compositions ranging from As<sub>33</sub>S<sub>67</sub> to As<sub>33</sub>Se<sub>67</sub> were deposited in specular optical quality and thermal dependences of their optical properties, thickness, surface roughness, organic residual content, structure, and chemical resistance were studied. The deposited thin films were also structured by hot embossing at various temperatures to study the influence of source solution preparation on structuring process. Thin films prepared from solution mixtures show close physico-chemical properties to thin films prepared from solutions of corresponding bulk glasses.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100142"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49308384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2023.100173
Jyothis Thomas , Thomas Meyneng , Yannick Ledemi , Anthony Roberge , Frederic Monet , Denis Seletskiy , Younès Messaddeq , Raman Kashyap
The optimization of the oxide and fluoride content, crystallinity and rare earth ion concentration in oxyfluoride glass ceramics (GCs) are of great importance in obtaining high photoluminescence quantum yield (PLQY) for optical refrigeration applications. Presented herein are the important advancements in the development of a novel oxyfluoride GCS of the composition (SiO2-Al2O3)(100-a) (YLiF4)b: (YbF3)b (a = 35 and 40; in mol %, b = 1 and 2 mol%) with the corresponding parent glasses with an in-depth investigation on enhancing the optical performance for laser cooling. Depending on the oxide/fluoride (O/F) ratio and ytterbium content the internal quantum yield (iQY) varied between 70 and 99% in glass ceramics at several excitation wavelengths. The optical properties of GCs containing YLiF4 and YF3 nanocrystals obtained from the same initial composition (modulated by time and fusion temperature) were compared to find the optimal composition for optical refrigeration. Low fluorine content led to the generation of YLiF4 as a major phase after ceramization and high fluorine content helped in the generation of the YF3 phase. An increase in the radiative lifetime of YF3 GCs compared to YLiF4 GCs has been found to coincide with the enhancement of the PLQY, which is beneficial for laser cooling. The temperature change (ΔT) change measured using a fiber Bragg grating (FBG) in the glass and glass-ceramic samples with different pump wavelengths showed significant heat mitigation near ∼1030 nm. The observed enhanced PL intensity, iQY and lifetime after purification of YLiF4 glasses imply that the purity of the material plays a paramount role in lowering the background absorption and enhancing the quantum yield. Looking ahead, we see a bright future for oxyfluoride GCs in applications requiring the ultimate levels of thermal, mechanical and optical performance, especially for the development of cryocooler devices, which are still technologically challenging and expensive. The usage of GCs will open up new possibilities in optical cooling technology, enabling cooling devices of any size and shape.
优化氟化氧玻璃陶瓷(GCs)的氧化物和氟化物含量、结晶度和稀土离子浓度对获得光学制冷用的高光致发光量子产率(PLQY)具有重要意义。本文介绍了一种新型氧氟化GCS的重要进展,其组成为(SiO2-Al2O3)(100-a) (YLiF4)b: (YbF3)b (a = 35和40;在mol%, b = 1和2 mol%)中加入相应的母玻璃,对提高激光冷却光学性能进行了深入的研究。根据氧化物/氟化物(O/F)比和镱含量的不同,在不同的激发波长下,玻璃陶瓷的内量子产率(iQY)在70%到99%之间变化。通过比较YLiF4和YF3纳米晶的初始组成(通过时间和熔合温度调制)得到的gc的光学性质,找出光学制冷的最佳组成。低氟含量导致陶瓷化后YLiF4作为主要相的生成,高氟含量有助于YF3相的生成。与YLiF4 gc相比,YF3 gc的辐射寿命增加与PLQY的增强一致,这有利于激光冷却。使用光纤布拉格光栅(FBG)在不同泵浦波长的玻璃和玻璃陶瓷样品中测量的温度变化(ΔT)变化表明,在~ 1030 nm附近有显著的热缓解。YLiF4玻璃纯化后的PL强度、iQY和寿命均有所提高,表明材料纯度在降低背景吸收和提高量子产率方面起着至关重要的作用。展望未来,我们看到氟化氧gc在热、机械和光学性能要求极高的应用领域有着光明的前景,特别是在开发技术上仍然具有挑战性和昂贵的冷冻器设备方面。gc的使用将为光学冷却技术开辟新的可能性,使任何尺寸和形状的冷却设备成为可能。
{"title":"Enhancing the optical performance of oxyfluoride glass ceramics by optimizing the oxide: Fluoride ratio and crystallinity for optical refrigeration","authors":"Jyothis Thomas , Thomas Meyneng , Yannick Ledemi , Anthony Roberge , Frederic Monet , Denis Seletskiy , Younès Messaddeq , Raman Kashyap","doi":"10.1016/j.nocx.2023.100173","DOIUrl":"10.1016/j.nocx.2023.100173","url":null,"abstract":"<div><p>The optimization of the oxide and fluoride content, crystallinity and rare earth ion concentration in oxyfluoride glass ceramics (GCs) are of great importance in obtaining high photoluminescence quantum yield (PLQY) for optical refrigeration applications. Presented herein are the important advancements in the development of a novel oxyfluoride GCS of the composition (SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>)<sub>(100-a)</sub> (YLiF<sub>4</sub>)<sub>b</sub>: (YbF<sub>3</sub>)<sub>b</sub> (a = 35 and 40; in mol %, b = 1 and 2 mol%) with the corresponding parent glasses with an in-depth investigation on enhancing the optical performance for laser cooling. Depending on the oxide/fluoride (O/F) ratio and ytterbium content the internal quantum yield (iQY) varied between 70 and 99% in glass ceramics at several excitation wavelengths. The optical properties of GCs containing YLiF<sub>4</sub> and YF<sub>3</sub> nanocrystals obtained from the same initial composition (modulated by time and fusion temperature) were compared to find the optimal composition for optical refrigeration. Low fluorine content led to the generation of YLiF<sub>4</sub> as a major phase after ceramization and high fluorine content helped in the generation of the YF<sub>3</sub> phase. An increase in the radiative lifetime of YF<sub>3</sub> GCs compared to YLiF<sub>4</sub> GCs has been found to coincide with the enhancement of the PLQY, which is beneficial for laser cooling. The temperature change (ΔT) change measured using a fiber Bragg grating (FBG) in the glass and glass-ceramic samples with different pump wavelengths showed significant heat mitigation near ∼1030 nm. The observed enhanced PL intensity, iQY and lifetime after purification of YLiF<sub>4</sub> glasses imply that the purity of the material plays a paramount role in lowering the background absorption and enhancing the quantum yield. Looking ahead, we see a bright future for oxyfluoride GCs in applications requiring the ultimate levels of thermal, mechanical and optical performance, especially for the development of cryocooler devices, which are still technologically challenging and expensive. The usage of GCs will open up new possibilities in optical cooling technology, enabling cooling devices of any size and shape.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45713664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2023.100156
Ryan Thorpe , Nicholas J. Smith , Cody V. Cushman , Gabriel P. Agnello , Joy Banerjee , Andrew C. Antony , Robert G. Manley
Glass surfaces play a critical role in several modern applications, and open questions remain as to how the bulk composition of a multicomponent glass informs its surface composition—particularly at the outermost monolayer. This has important implications for properties such as electrostatic charging, wetting, and adhesion. Here, we apply high-sensitivity low-energy ion scattering (HS-LEIS) to examine a systematic series of ternary CaO-Al2O3-SiO2 glass compositions. Analyzed are fresh fracture surfaces created under high-vacuum conditions, giving rigorous attention to peak quantification details. Results indicate that the measured surface compositions are, within uncertainty, very close to analyzed bulk compositions. This finding runs contrary to many studies showing disagreement between surface and bulk composition in glass, and possible reasons are discussed. By providing an experimental foundation from relatively ideal fracture surfaces, these results pave the way for further studies on the outermost composition of realistic glass surfaces of commercial importance.
{"title":"High-sensitivity low-energy ion scattering studies of calcium aluminosilicate glass fracture surfaces","authors":"Ryan Thorpe , Nicholas J. Smith , Cody V. Cushman , Gabriel P. Agnello , Joy Banerjee , Andrew C. Antony , Robert G. Manley","doi":"10.1016/j.nocx.2023.100156","DOIUrl":"10.1016/j.nocx.2023.100156","url":null,"abstract":"<div><p>Glass surfaces play a critical role in several modern applications, and open questions remain as to how the bulk composition of a multicomponent glass informs its surface composition—particularly at the outermost monolayer. This has important implications for properties such as electrostatic charging, wetting, and adhesion. Here, we apply high-sensitivity low-energy ion scattering (HS-LEIS) to examine a systematic series of ternary CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glass compositions. Analyzed are fresh fracture surfaces created under high-vacuum conditions, giving rigorous attention to peak quantification details. Results indicate that the measured surface compositions are, within uncertainty, very close to analyzed bulk compositions. This finding runs contrary to many studies showing disagreement between surface and bulk composition in glass, and possible reasons are discussed. By providing an experimental foundation from relatively ideal fracture surfaces, these results pave the way for further studies on the outermost composition of realistic glass surfaces of commercial importance.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100156"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44710411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2022.100140
Hiroko Kusumoto , Robert G. Hill , Natalia Karpukhina , Robert V. Law
{"title":"Erratum to “Magnesium substitution in calcium and strontium fluoro-phospho-aluminosilicate glasses by multinuclear 19F, 31P, 27Al, and 29Si MAS-NMR spectroscopy” [Journal of Non Crystalline Solids:X 1C (2019) 100008]","authors":"Hiroko Kusumoto , Robert G. Hill , Natalia Karpukhina , Robert V. Law","doi":"10.1016/j.nocx.2022.100140","DOIUrl":"10.1016/j.nocx.2022.100140","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100140"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42405689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2022.100150
Jinhua Yu, Zheng Wang, Wei Chu, Yanwen Bai, Lina Hu
It has been a long-sought goal to explore the nature of amorphous formation. Investigate the role of interatomic potential can be a fascinating method to study this myth from bottom up. In this work, molecular dynamics is used to systematically study the glass forming processes of binary CuZr melts on both structural and dynamical evolutions. The strong repulsion between CuCu and the weak repulsion between ZrZr is found to determine the structural arrangement, and then affect the type, number and spatial correlation of clusters. The difference of melt dynamics is controlled by both the steep repulsion and the anharmonic attraction of potential. The increase of the anharmonic attraction in melts can also lead to a higher shear transformation zone density in the glass. Our findings provide deeper insights into the understanding of glass-forming processes and its connection to glassy performance controlled by interatomic potential.
{"title":"Interatomic potential controlled glass forming processes of binary CuZr melts","authors":"Jinhua Yu, Zheng Wang, Wei Chu, Yanwen Bai, Lina Hu","doi":"10.1016/j.nocx.2022.100150","DOIUrl":"10.1016/j.nocx.2022.100150","url":null,"abstract":"<div><p>It has been a long-sought goal to explore the nature of amorphous formation. Investigate the role of interatomic potential can be a fascinating method to study this myth from bottom up. In this work, molecular dynamics is used to systematically study the glass forming processes of binary CuZr melts on both structural and dynamical evolutions. The strong repulsion between Cu<img>Cu and the weak repulsion between Zr<img>Zr is found to determine the structural arrangement, and then affect the type, number and spatial correlation of clusters. The difference of melt dynamics is controlled by both the steep repulsion and the anharmonic attraction of potential. The increase of the anharmonic attraction in melts can also lead to a higher shear transformation zone density in the glass. Our findings provide deeper insights into the understanding of glass-forming processes and its connection to glassy performance controlled by interatomic potential.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100150"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49561954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1016/j.nocx.2022.100137
Fernando C. Pérez-Cárdenas
{"title":"Erratum to “The irrelevance of phantom nuclei in crystallization kinetics: An integral equation approach” [Journal of Non Crystalline Solids:X 1C (2019) 100002]","authors":"Fernando C. Pérez-Cárdenas","doi":"10.1016/j.nocx.2022.100137","DOIUrl":"10.1016/j.nocx.2022.100137","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"17 ","pages":"Article 100137"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43885678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.nocx.2023.100162
V. McGahay
{"title":"Phase separation in the H2O-SiO2 system","authors":"V. McGahay","doi":"10.1016/j.nocx.2023.100162","DOIUrl":"https://doi.org/10.1016/j.nocx.2023.100162","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"55439274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review is dedicated to recent advances in the study of bismuth-doped silica-based fibers, which are vital components for creating promising contemporary optical devices operating in the near IR region. The first part of the review summarizes features inherent to different types of bismuth active centers, such as photo- and thermally induced destruction and recovery, which are particularly of great interest with respect to the nature of luminescence in bismuth-doped fibers (BDFs). In addition, the review specifies the status and possible ways on how to improve the main characteristics of BDFs, moreover, the paper proposes the latest results regarding novel designs of BDFs and demonstrates recent progress in fiber lasers and amplifiers based on them, including bismuth lasers with record performance parameters, as well as compact and efficient broadband amplifiers. In conclusion, a short summary alongside with road-to-market perspectives of the developed active fibers are given.
{"title":"Recent advances in Bi-doped silica-based optical fibers: A short review","authors":"A.M. Khegai , S.V. Alyshev , A.S. Vakhrushev , K.E. Riumkin , A.A. Umnikov , S.V. Firstov","doi":"10.1016/j.nocx.2022.100126","DOIUrl":"10.1016/j.nocx.2022.100126","url":null,"abstract":"<div><p>This review is dedicated to recent advances in the study of bismuth-doped silica-based fibers, which are vital components for creating promising contemporary optical devices operating in the near IR region. The first part of the review summarizes features inherent to different types of bismuth active centers, such as photo- and thermally induced destruction and recovery, which are particularly of great interest with respect to the nature of luminescence in bismuth-doped fibers (BDFs). In addition, the review specifies the status and possible ways on how to improve the main characteristics of BDFs, moreover, the paper proposes the latest results regarding novel designs of BDFs and demonstrates recent progress in fiber lasers and amplifiers based on them, including bismuth lasers with record performance parameters, as well as compact and efficient broadband amplifiers. In conclusion, a short summary alongside with road-to-market perspectives of the developed active fibers are given.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"16 ","pages":"Article 100126"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000462/pdfft?md5=dd6951b47a157527f876cb8db921ca35&pid=1-s2.0-S2590159122000462-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46611983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.nocx.2022.100127
Jincheng Du , Randall Youngman , Jianrong Qiu , Rui M. Almeida
{"title":"A window to the future: Frontiers of glass research from a world perspective","authors":"Jincheng Du , Randall Youngman , Jianrong Qiu , Rui M. Almeida","doi":"10.1016/j.nocx.2022.100127","DOIUrl":"10.1016/j.nocx.2022.100127","url":null,"abstract":"","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"16 ","pages":"Article 100127"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000474/pdfft?md5=803f65905cf0fab28942dcb39c9c5c26&pid=1-s2.0-S2590159122000474-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46686291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.nocx.2022.100129
Jong Heo , Byoungjin So , Zhiyong Zhao , Tihitnaw Fentahun Degu
PbS quantum dots (QDs) are appropriate for use in tunable optoelectronic devices such as optical amplifiers because of their large Bohr exciton radii (18 nm). Laser-assisted local heating around Ag NPs can provide an effective method for site selective precipitation and for controlling the size of QDs. Continuous wave (CW) laser irradiation has been applied on a Ag+-ion exchanged glass which lead to the precipitation of QDs PbS QDs of 5-nm diameter were precipitated after 3 min of CW laser illumination at 1.5 W. The PbS QDs showed a PL peak at λ ∼ 1490 nm, which shifted toward longer wavelength side as duration of Ag+ ion exchange and of laser illumination increased. This method was further applied to prepare a rod containing three sections with different diameters of PbS QDs to propose the possibility of developing broadband amplifiers to cover the 1.3–1.7 μm communication window using one glass fiber. Co2+ also absorbs 532 nm laser light and converts it to thermal energy that results in the precipitation of PbS QDs in the glass matrix. The emission peak of the QDs covers 1020 nm < λ < 1245 nm as laser power was increased from 6 to 7 W/cm2. Temperature in the glass increased to ∼518 °C when it was illuminated at the intensity of 6 W/cm2.
{"title":"Continuous-wave green laser irradiation to form PbS quantum dots in glass","authors":"Jong Heo , Byoungjin So , Zhiyong Zhao , Tihitnaw Fentahun Degu","doi":"10.1016/j.nocx.2022.100129","DOIUrl":"10.1016/j.nocx.2022.100129","url":null,"abstract":"<div><p>PbS quantum dots (QDs) are appropriate for use in tunable optoelectronic devices such as optical amplifiers because of their large Bohr exciton radii (18 nm). Laser-assisted local heating around Ag NPs can provide an effective method for site selective precipitation and for controlling the size of QDs. Continuous wave (CW) laser irradiation has been applied on a Ag<sup>+</sup>-ion exchanged glass which lead to the precipitation of QDs PbS QDs of 5-nm diameter were precipitated after 3 min of CW laser illumination at 1.5 W. The PbS QDs showed a PL peak at λ ∼ 1490 nm, which shifted toward longer wavelength side as duration of Ag<sup>+</sup> ion exchange and of laser illumination increased. This method was further applied to prepare a rod containing three sections with different diameters of PbS QDs to propose the possibility of developing broadband amplifiers to cover the 1.3–1.7 μm communication window using one glass fiber. Co<sup>2+</sup> also absorbs 532 nm laser light and converts it to thermal energy that results in the precipitation of PbS QDs in the glass matrix. The emission peak of the QDs covers 1020 nm < λ < 1245 nm as laser power was increased from 6 to 7 W/cm<sup>2</sup>. Temperature in the glass increased to ∼518 °C when it was illuminated at the intensity of 6 W/cm<sup>2</sup>.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"16 ","pages":"Article 100129"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000498/pdfft?md5=5e3d9adf6b689c967625ed2b9c406440&pid=1-s2.0-S2590159122000498-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41745906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}