首页 > 最新文献

Adv. Artif. Intell. Mach. Learn.最新文献

英文 中文
Machine Learning Language Models: Achilles Heel for Social Media Platforms and a Possible Solution 机器学习语言模型:社交媒体平台的阿喀琉斯之踵和可能的解决方案
Pub Date : 1900-01-01 DOI: 10.54364/aaiml.2021.1112
R. Sear, R. Leahy, N. J. Restrepo, Y. Lupu, N. Johnson
Any uptick in new misinformation that casts doubt on COVID-19 mitigation strategies, such as vaccine boosters and masks, could reverse society’s recovery from the pandemic both nationally and globally. This study demonstrates howmachine learning language models can automatically generate new COVID-19 and vaccine misinformation that appears fresh and realistic (i.e. human-generated) even to subject matter experts. The study uses the latest version of theGPTmodel that is public and freely available, GPT-2, and inputs publicly available text collected from social media communities that are known for their high levels of health misinformation. The same team of subject matter experts that classified the original social media data used as input, are then asked to categorize the GPT-2 output without knowing about its automated origin. None of them successfully identified all the synthetic text strings as being a product of the machine model. This presents a clear warning for social media platforms: an unlimited volume of fresh and seemingly human-produced misinformation can be created perpetually on social media using current, off-the-shelf machine learning algorithms that run continually. We then offer a solution: a statistical approach that detects differences in the dynamics of this output as compared to typical human behavior.
任何对COVID-19缓解战略(如疫苗增强剂和口罩)产生怀疑的新错误信息的增加,都可能逆转国家和全球社会从大流行中复苏的势头。这项研究展示了机器学习语言模型如何自动生成新的COVID-19和疫苗错误信息,即使对主题专家来说,这些信息也显得新鲜和真实(即人为生成)。该研究使用了最新版本的公共免费gpt模型GPT-2,并输入了从社交媒体社区收集的公开文本,这些社区以其高水平的健康错误信息而闻名。将原始社交媒体数据分类作为输入的同一主题专家团队,随后被要求在不知道其自动来源的情况下对GPT-2输出进行分类。它们都没有成功地将所有合成文本字符串识别为机器模型的产物。这对社交媒体平台提出了一个明确的警告:使用当前的、现成的、持续运行的机器学习算法,可以在社交媒体上永久地创造出无限数量的新鲜的、似乎是人为制造的错误信息。然后,我们提供了一个解决方案:一种统计方法,可以检测输出动态与典型人类行为的差异。
{"title":"Machine Learning Language Models: Achilles Heel for Social Media Platforms and a Possible Solution","authors":"R. Sear, R. Leahy, N. J. Restrepo, Y. Lupu, N. Johnson","doi":"10.54364/aaiml.2021.1112","DOIUrl":"https://doi.org/10.54364/aaiml.2021.1112","url":null,"abstract":"Any uptick in new misinformation that casts doubt on COVID-19 mitigation strategies, such as vaccine boosters and masks, could reverse society’s recovery from the pandemic both nationally and globally. This study demonstrates howmachine learning language models can automatically generate new COVID-19 and vaccine misinformation that appears fresh and realistic (i.e. human-generated) even to subject matter experts. The study uses the latest version of theGPTmodel that is public and freely available, GPT-2, and inputs publicly available text collected from social media communities that are known for their high levels of health misinformation. The same team of subject matter experts that classified the original social media data used as input, are then asked to categorize the GPT-2 output without knowing about its automated origin. None of them successfully identified all the synthetic text strings as being a product of the machine model. This presents a clear warning for social media platforms: an unlimited volume of fresh and seemingly human-produced misinformation can be created perpetually on social media using current, off-the-shelf machine learning algorithms that run continually. We then offer a solution: a statistical approach that detects differences in the dynamics of this output as compared to typical human behavior.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121352832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Step Towards Global Counterfactual Explanations: Approximating the Feature Space Through Hierarchical Division and Graph Search 向全局反事实解释迈进一步:通过层次划分和图搜索逼近特征空间
Pub Date : 1900-01-01 DOI: 10.54364/aaiml.2021.1107
Maximilian Becker, Nadia Burkart, Pascal Birnstill, J. Beyerer
The field of Explainable Artificial Intelligence (XAI) tries to make learned models more understandable. One type of explanation for such models are counterfactual explanations. Counterfactual explanations explain the decision for a specific instance, the factual, by providing a similar instance which leads to a different decision, the counterfactual. In this work a new approaches around the idea of counterfactuals was developed. It generates a data structure over the feature space of a classification problem to accelerate the search for counterfactuals and augments them with global explanations. The approach maps the feature space by hierarchically dividing it into regions which belong to the same class. It is applicable in any case where predictions can be generated for input data, even without direct access to the model. The framework works well for lower-dimensional problems but becomes unpractical due to high computation times at around 12 to 15 dimensions.
可解释人工智能(XAI)领域试图使学习到的模型更容易理解。这种模型的一种解释是反事实解释。反事实解释通过提供一个类似的导致不同决定的反事实的例子来解释特定情况下的决定,即事实。在这项工作中,围绕反事实的思想发展了一种新的方法。它在分类问题的特征空间上生成一个数据结构,以加速对反事实的搜索,并通过全局解释对其进行扩充。该方法通过将特征空间分层划分为属于同一类的区域来映射特征空间。它适用于任何可以为输入数据生成预测的情况,即使没有直接访问模型。该框架可以很好地解决低维问题,但由于在大约12到15维时的高计算时间而变得不实用。
{"title":"A Step Towards Global Counterfactual Explanations: Approximating the Feature Space Through Hierarchical Division and Graph Search","authors":"Maximilian Becker, Nadia Burkart, Pascal Birnstill, J. Beyerer","doi":"10.54364/aaiml.2021.1107","DOIUrl":"https://doi.org/10.54364/aaiml.2021.1107","url":null,"abstract":"The field of Explainable Artificial Intelligence (XAI) tries to make learned models more understandable. One type of explanation for such models are counterfactual explanations. Counterfactual explanations explain the decision for a specific instance, the factual, by providing a similar instance which leads to a different decision, the counterfactual. In this work a new approaches around the idea of counterfactuals was developed. It generates a data structure over the feature space of a classification problem to accelerate the search for counterfactuals and augments them with global explanations. The approach maps the feature space by hierarchically dividing it into regions which belong to the same class. It is applicable in any case where predictions can be generated for input data, even without direct access to the model. The framework works well for lower-dimensional problems but becomes unpractical due to high computation times at around 12 to 15 dimensions.","PeriodicalId":373878,"journal":{"name":"Adv. Artif. Intell. Mach. Learn.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115113694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Adv. Artif. Intell. Mach. Learn.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1