首页 > 最新文献

Current Opinion in Systems Biology最新文献

英文 中文
Metabolic dynamics during the cell cycle 细胞周期中的代谢动力学
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100415
Andre Zylstra, Matthias Heinemann

While we have a solid understanding of the cell biological and biochemical control aspects of the eukaryotic cell growth and division process, much less is known about the metabolic and biosynthetic dynamics during the cell cycle. Here, we review recent discoveries made at the single-cell and population level that show that budding yeast (Saccharomyces cerevisiae) metabolism oscillates in synchrony with the cell cycle in actively dividing cells, as well as independently when the cell cycle is halted. In fact, emerging evidence suggests that the cell cycle-independent metabolic oscillations interact with elements of the cell cycle machinery via several possible mechanisms. Furthermore, recent reports indicate that different biosynthetic processes exhibit temporally changing activity patterns during the cell cycle. Thus, resources are drawn from primary metabolism in a dynamic manner, potentially giving rise to metabolic oscillations. Finally, we highlight work with mammalian cells indicating that similar metabolic dynamics might also exist in higher eukaryotes.

虽然我们对真核细胞生长和分裂过程的细胞生物学和生化控制方面有了扎实的了解,但对细胞周期中的代谢和生物合成动力学知之甚少。在这里,我们回顾了最近在单细胞和群体水平上的发现,这些发现表明出芽酵母(Saccharomyces cerevisiae)的代谢在活跃分裂的细胞中与细胞周期同步振荡,并且在细胞周期停止时独立振荡。事实上,新出现的证据表明,细胞周期独立的代谢振荡通过几种可能的机制与细胞周期机械的元件相互作用。此外,最近的报告表明,在细胞周期中,不同的生物合成过程表现出暂时变化的活动模式。因此,资源是以一种动态的方式从初级代谢中提取的,这可能会引起代谢振荡。最后,我们强调了哺乳动物细胞的工作,表明类似的代谢动力学也可能存在于高等真核生物中。
{"title":"Metabolic dynamics during the cell cycle","authors":"Andre Zylstra,&nbsp;Matthias Heinemann","doi":"10.1016/j.coisb.2022.100415","DOIUrl":"10.1016/j.coisb.2022.100415","url":null,"abstract":"<div><p>While we have a solid understanding of the cell biological and biochemical control aspects of the eukaryotic cell growth and division process, much less is known about the metabolic and biosynthetic dynamics during the cell cycle. Here, we review recent discoveries made at the single-cell and population level that show that budding yeast (<em>Saccharomyces cerevisiae</em>) metabolism oscillates in synchrony with the cell cycle in actively dividing cells, as well as independently when the cell cycle is halted. In fact, emerging evidence suggests that the cell cycle-independent metabolic oscillations interact with elements of the cell cycle machinery via several possible mechanisms. Furthermore, recent reports indicate that different biosynthetic processes exhibit temporally changing activity patterns during the cell cycle. Thus, resources are drawn from primary metabolism in a dynamic manner, potentially giving rise to metabolic oscillations. Finally, we highlight work with mammalian cells indicating that similar metabolic dynamics might also exist in higher eukaryotes.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100415"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000014/pdfft?md5=0ceeea28044602a21abcb5841856610a&pid=1-s2.0-S2452310022000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41405427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Organelle dysfunction and its contribution to metabolic impairments in aging and age-related diseases 细胞器功能障碍及其对衰老和年龄相关疾病代谢损伤的贡献
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100416
Julia C. Heiby, Alessandro Ori

Aging is a major risk factor for most diseases. Pathways regulating metabolism, including nutrient sensing, energy production, and synthesis and degradation of macromolecules, have been identified as key regulators of organismal lifespan and implicated in several late-onset diseases, such as most neurodegenerative disorders. In this review, we focus on emerging evidence that links the remodeling of key organelles, namely mitochondria and lysosomes, to metabolic alterations that manifest during the aging process. We highlight data demonstrating a reciprocal interaction between organelle (dys)-function and protein homeostasis in aging. We also discuss examples of cell-type-specific metabolic alterations that can influence organ function locally and whole organism aging via inter-tissue communication. Finally, we propose how emerging methods could enable to characterize in vivo the impact of aging on organelle composition and function.

衰老是大多数疾病的主要危险因素。调节代谢的途径,包括营养感知、能量产生、大分子的合成和降解,已被确定为生物体寿命的关键调节因子,并涉及几种晚发性疾病,如大多数神经退行性疾病。在这篇综述中,我们关注的是将关键细胞器(即线粒体和溶酶体)的重塑与衰老过程中出现的代谢改变联系起来的新证据。我们强调的数据表明,细胞器(天)功能和蛋白质稳态之间的相互作用在衰老。我们还讨论了细胞类型特异性代谢改变的例子,这些代谢改变可以通过组织间通信影响局部器官功能和整个生物体衰老。最后,我们提出了新兴方法如何能够表征衰老对细胞器组成和功能的体内影响。
{"title":"Organelle dysfunction and its contribution to metabolic impairments in aging and age-related diseases","authors":"Julia C. Heiby,&nbsp;Alessandro Ori","doi":"10.1016/j.coisb.2022.100416","DOIUrl":"10.1016/j.coisb.2022.100416","url":null,"abstract":"<div><p>Aging is a major risk factor for most diseases. Pathways regulating metabolism, including nutrient sensing, energy production, and synthesis and degradation of macromolecules, have been identified as key regulators of organismal lifespan and implicated in several late-onset diseases, such as most neurodegenerative disorders. In this review, we focus on emerging evidence that links the remodeling of key organelles, namely mitochondria and lysosomes, to metabolic alterations that manifest during the aging process. We highlight data demonstrating a reciprocal interaction between organelle (dys)-function and protein homeostasis in aging. We also discuss examples of cell-type-specific metabolic alterations that can influence organ function locally and whole organism aging via inter-tissue communication. Finally, we propose how emerging methods could enable to characterize <em>in vivo</em> the impact of aging on organelle composition and function.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100416"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000026/pdfft?md5=f704136af8bba1493575582fb5a97f28&pid=1-s2.0-S2452310022000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44582994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial overview: Control engineering in synthetic biology: Foundations and applications 编辑概述:合成生物学中的控制工程:基础和应用
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100406
Ron Weiss, Velia Siciliano
{"title":"Editorial overview: Control engineering in synthetic biology: Foundations and applications","authors":"Ron Weiss,&nbsp;Velia Siciliano","doi":"10.1016/j.coisb.2021.100406","DOIUrl":"10.1016/j.coisb.2021.100406","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100406"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44412707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Page 编委会页面
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/S2452-3100(22)00004-X
{"title":"Editorial Board Page","authors":"","doi":"10.1016/S2452-3100(22)00004-X","DOIUrl":"https://doi.org/10.1016/S2452-3100(22)00004-X","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100418"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245231002200004X/pdfft?md5=6bb36100a0d60d40d0fc6462805d6ca8&pid=1-s2.0-S245231002200004X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137355923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomics in diagnostics of inborn metabolic disorders 代谢组学在先天性代谢紊乱诊断中的应用
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100409
Judith JM. Jans , Melissa H. Broeks , Nanda M. Verhoeven-Duif

Finding a diagnosis for patients with a rare inborn metabolic disorder can be a long and difficult path. Whereas next generation sequencing is now a commonly used modality, which has significantly impacted the diagnostic yield and speed, next generation metabolic screening through untargeted metabolomics is next in line to prove its value in the diagnostic trajectory.

Untargeted metabolomics, often based on mass spectrometry platforms, is a well-established technology for the identification of novel disease markers. However, untargeted metabolomics as first line diagnostics for rare disease is now only gradually making its way into clinical practice. Most retrospective studies show that the majority of inborn metabolic disorder can be detected through untargeted metabolomics. Some diseases will still go undetected, which diagnoses are missed depends on the specific metabolomics method chosen; there is no single all-encompassing platform. Therefore, careful assessments of the opportunities and limitations are currently undertaken in prospective studies, combining untargeted metabolomics in the diagnostics setting with the current gold standard genetic and biochemical diagnostic modalities. These studies show an increased diagnostic yield when implementing untargeted metabolomics. Given the continuing technological advances, defining the optimal timing, place, and order of the various diagnostic modalities will keep on evolving in the foreseen future.

对患有罕见的先天性代谢紊乱的患者进行诊断可能是一条漫长而艰难的道路。虽然下一代测序现在是一种常用的方式,它显著地影响了诊断的产量和速度,但通过非靶向代谢组学进行下一代代谢筛查将证明其在诊断轨迹中的价值。非靶向代谢组学,通常基于质谱平台,是一种成熟的技术,用于鉴定新的疾病标志物。然而,作为罕见病的一线诊断手段,非靶向代谢组学现在只是逐渐进入临床实践。大多数回顾性研究表明,大多数先天性代谢紊乱可以通过非靶向代谢组学检测到。有些疾病仍未被发现,哪些诊断被遗漏取决于所选择的特定代谢组学方法;不存在单一的包罗万象的平台。因此,目前在前瞻性研究中对机会和局限性进行了仔细的评估,将诊断设置中的非靶向代谢组学与当前的金标准遗传和生化诊断模式相结合。这些研究表明,当实施非靶向代谢组学时,诊断率增加。鉴于技术的不断进步,在可预见的未来,确定各种诊断方式的最佳时间、地点和顺序将继续发展。
{"title":"Metabolomics in diagnostics of inborn metabolic disorders","authors":"Judith JM. Jans ,&nbsp;Melissa H. Broeks ,&nbsp;Nanda M. Verhoeven-Duif","doi":"10.1016/j.coisb.2021.100409","DOIUrl":"10.1016/j.coisb.2021.100409","url":null,"abstract":"<div><p>Finding a diagnosis for patients with a rare inborn metabolic disorder can be a long and difficult path. Whereas next generation sequencing is now a commonly used modality, which has significantly impacted the diagnostic yield and speed, next generation metabolic screening through untargeted metabolomics is next in line to prove its value in the diagnostic trajectory.</p><p>Untargeted metabolomics, often based on mass spectrometry platforms, is a well-established technology for the identification of novel disease markers. However, untargeted metabolomics as first line diagnostics for rare disease is now only gradually making its way into clinical practice. Most retrospective studies show that the majority of inborn metabolic disorder can be detected through untargeted metabolomics. Some diseases will still go undetected, which diagnoses are missed depends on the specific metabolomics method chosen; there is no single all-encompassing platform. Therefore, careful assessments of the opportunities and limitations are currently undertaken in prospective studies, combining untargeted metabolomics in the diagnostics setting with the current gold standard genetic and biochemical diagnostic modalities. These studies show an increased diagnostic yield when implementing untargeted metabolomics. Given the continuing technological advances, defining the optimal timing, place, and order of the various diagnostic modalities will keep on evolving in the foreseen future.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100409"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021001049/pdfft?md5=967143ed4644a1e92c1cb82efc3ba605&pid=1-s2.0-S2452310021001049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42607685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Compartmentalization of metabolism between cell types in multicellular organisms: A computational perspective 多细胞生物中细胞类型间代谢的区隔化:计算视角
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100407
Xuhang Li, L. Safak Yilmaz, Albertha J.M. Walhout

In multicellular organisms, metabolism is compartmentalized at many levels, including tissues and organs, different cell types, and subcellular compartments. Compartmentalization creates a coordinated homeostatic system where each compartment contributes to the production of energy and biomolecules that the organism needs to carry out specific metabolic tasks. Experimentally studying metabolic compartmentalization and metabolic interactions between cells and tissues in multicellular organisms is challenging at a systems level. However, recent progress in computational modeling provides an alternative approach to this problem. Here, we discuss how integrating metabolic network modeling with omics data offers an opportunity to reveal metabolic states at the level of organs, tissues and, ultimately, individual cells. We review the current status of genome-scale metabolic network models in multicellular organisms, methods to study metabolic compartmentalization in silico, and insights gained from computational analyses. We also discuss outstanding challenges and provide perspectives for the future directions of the field.

在多细胞生物中,代谢在许多水平上是区隔的,包括组织和器官、不同的细胞类型和亚细胞区隔。区隔化创造了一个协调的内稳态系统,其中每个区隔都有助于产生生物体执行特定代谢任务所需的能量和生物分子。实验研究多细胞生物中细胞和组织之间的代谢区隔化和代谢相互作用在系统水平上具有挑战性。然而,计算建模的最新进展为这个问题提供了另一种方法。在这里,我们讨论了如何将代谢网络建模与组学数据相结合,为揭示器官、组织和最终个体细胞水平的代谢状态提供了机会。我们回顾了多细胞生物基因组尺度代谢网络模型的现状,在计算机上研究代谢区隔化的方法,以及从计算分析中获得的见解。我们还讨论了突出的挑战,并为该领域的未来方向提供了观点。
{"title":"Compartmentalization of metabolism between cell types in multicellular organisms: A computational perspective","authors":"Xuhang Li,&nbsp;L. Safak Yilmaz,&nbsp;Albertha J.M. Walhout","doi":"10.1016/j.coisb.2021.100407","DOIUrl":"10.1016/j.coisb.2021.100407","url":null,"abstract":"<div><p><span>In multicellular organisms, metabolism is compartmentalized at many levels, including tissues and organs, different cell types, and subcellular compartments. Compartmentalization<span> creates a coordinated homeostatic system where each compartment contributes to the production of energy and biomolecules that the organism needs to carry out specific metabolic tasks. Experimentally studying metabolic compartmentalization and metabolic interactions between cells and tissues in multicellular organisms is challenging at a systems level. However, recent progress in computational modeling<span> provides an alternative approach to this problem. Here, we discuss how integrating metabolic network modeling<span> with omics data offers an opportunity to reveal metabolic states at the level of organs, tissues and, ultimately, individual cells. We review the current status of genome-scale metabolic network models in multicellular organisms, methods to study metabolic compartmentalization </span></span></span></span><em>in silico</em>, and insights gained from computational analyses. We also discuss outstanding challenges and provide perspectives for the future directions of the field.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100407"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10800315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lessons from metabolic perturbations in lysosomal storage disorders for neurodegeneration 神经退行性疾病溶酶体贮积障碍的代谢扰动的教训
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100408
Uche N. Medoh , Julie Y. Chen , Monther Abu-Remaileh

Age-related neurodegenerative diseases are a clinically unmet need with unabated prevalence around the world. Several genetic studies link these diseases with lysosomal dysfunction; however, a mechanistic understanding of how lysosomal perturbations result in neurodegeneration is unclear. Neuronopathic lysosomal storage disorders represent an attractive model for elucidating such mechanisms as they share several metabolic pathological hallmarks with common neurodegenerative diseases. This review explores how altered lipid metabolism, calcium dyshomeostasis, mitochondrial dysfunction, oxidative stress, and impaired autophagic flux contribute to cellular pathobiology in age-related neurodegeneration and neuronopathic lysosomal storage disorders. It further debates whether general lysosomal dysfunction owing to toxic substrate accumulation or extralysosomal nutrient deprivation drives these downstream processes. With increasing evidence for the latter, future studies should investigate additional lysosomal nutrients that protect against neurodegeneration using emerging subcellular ‘omics’-based technologies with the promise of identifying therapeutic targets for the treatment of neurodegenerative diseases.

与年龄相关的神经退行性疾病是临床未满足的需求,在世界各地的患病率有增无减。一些遗传学研究将这些疾病与溶酶体功能障碍联系起来;然而,对溶酶体扰动如何导致神经变性的机制理解尚不清楚。神经性溶酶体贮积性疾病是阐明这类机制的一个有吸引力的模型,因为它们与常见的神经退行性疾病有几个共同的代谢病理特征。这篇综述探讨了脂质代谢改变、钙平衡失调、线粒体功能障碍、氧化应激和自噬通量受损如何在年龄相关的神经变性和神经性溶酶体储存障碍中促进细胞病理生物学。它进一步争论是否普遍溶酶体功能障碍,由于有毒底物积累或外溶酶体营养剥夺驱动这些下游过程。随着对后者的证据越来越多,未来的研究应该利用新兴的基于亚细胞“组学”的技术来研究更多的溶酶体营养素,以防止神经退行性疾病的治疗,并有希望确定治疗神经退行性疾病的治疗靶点。
{"title":"Lessons from metabolic perturbations in lysosomal storage disorders for neurodegeneration","authors":"Uche N. Medoh ,&nbsp;Julie Y. Chen ,&nbsp;Monther Abu-Remaileh","doi":"10.1016/j.coisb.2021.100408","DOIUrl":"10.1016/j.coisb.2021.100408","url":null,"abstract":"<div><p><span>Age-related neurodegenerative diseases are a clinically unmet need with unabated prevalence around the world. Several genetic studies link these diseases with lysosomal dysfunction; however, a mechanistic understanding of how lysosomal perturbations result in neurodegeneration is unclear. Neuronopathic lysosomal storage disorders represent an attractive model for elucidating such mechanisms as they share several metabolic pathological hallmarks with common neurodegenerative diseases. This review explores how altered lipid metabolism, calcium dyshomeostasis, mitochondrial dysfunction, </span>oxidative stress, and impaired autophagic flux contribute to cellular pathobiology in age-related neurodegeneration and neuronopathic lysosomal storage disorders. It further debates whether general lysosomal dysfunction owing to toxic substrate accumulation or extralysosomal nutrient deprivation drives these downstream processes. With increasing evidence for the latter, future studies should investigate additional lysosomal nutrients that protect against neurodegeneration using emerging subcellular ‘omics’-based technologies with the promise of identifying therapeutic targets for the treatment of neurodegenerative diseases.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100408"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41515878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Editorial overview: ‘Mathematical modelling of high-throughput and high-content data’ 编辑概述:“高通量和高含量数据的数学建模”
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100405
Jan Hasenauer, Julio R. Banga
{"title":"Editorial overview: ‘Mathematical modelling of high-throughput and high-content data’","authors":"Jan Hasenauer,&nbsp;Julio R. Banga","doi":"10.1016/j.coisb.2021.100405","DOIUrl":"10.1016/j.coisb.2021.100405","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100405"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43550177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using resource constraints derived from genomic and proteomic data in metabolic network models 利用代谢网络模型中基因组和蛋白质组学数据得出的资源约束
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-03-01 DOI: 10.1016/j.coisb.2021.100400
Kobe De Becker , Niccolò Totis , Kristel Bernaerts , Steffen Waldherr

The increasing amount of available high-content data in genomics, proteomics, and metabolomics has significantly improved the predictive power and model accuracy of genome-scale metabolic network models in recent years. We review recent constraint-based modeling approaches that incorporate genomics and proteomics data to form resource allocation models. Different modeling approaches to build resource allocation models and the related enzyme-constrained genome-scale metabolic models are discussed and evaluated with respect to differences regarding model features. In addition, an overview of the data required to construct, simulate and validate models for the different approaches is given, together with a list of relevant databases.

近年来,基因组学、蛋白质组学和代谢组学中可用的高含量数据越来越多,显著提高了基因组尺度代谢网络模型的预测能力和模型准确性。我们回顾了最近基于约束的建模方法,这些方法结合了基因组学和蛋白质组学数据来形成资源分配模型。不同的建模方法来建立资源分配模型和相关的酶约束基因组尺度代谢模型进行了讨论和评估,相对于模型特征的差异。此外,还概述了为不同方法构建、模拟和验证模型所需的数据,并列出了相关数据库的清单。
{"title":"Using resource constraints derived from genomic and proteomic data in metabolic network models","authors":"Kobe De Becker ,&nbsp;Niccolò Totis ,&nbsp;Kristel Bernaerts ,&nbsp;Steffen Waldherr","doi":"10.1016/j.coisb.2021.100400","DOIUrl":"10.1016/j.coisb.2021.100400","url":null,"abstract":"<div><p>The increasing amount of available high-content data in genomics, proteomics, and metabolomics has significantly improved the predictive power and model accuracy of genome-scale metabolic network models in recent years. We review recent constraint-based modeling approaches that incorporate genomics and proteomics data to form resource allocation models. Different modeling approaches to build resource allocation models and the related enzyme-constrained genome-scale metabolic models are discussed and evaluated with respect to differences regarding model features. In addition, an overview of the data required to construct, simulate and validate models for the different approaches is given, together with a list of relevant databases.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"29 ","pages":"Article 100400"},"PeriodicalIF":3.7,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000950/pdfft?md5=2f27b64fda369764a9aea6b24274176c&pid=1-s2.0-S2452310021000950-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43678873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The evolution of the metabolic network over long timelines 长时间内代谢网络的进化
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2021-12-01 DOI: 10.1016/j.coisb.2021.100402
Markus Ralser , Sreejith J. Varma , Richard A. Notebaart

Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species.

新陈代谢是由一个有效的、相互联系的、古老的生化系统——代谢网络来完成的。然而,它的进化起源却鲜为人知。我们在这里讨论了由于生态位适应,作用于代谢网络结构的进化选择区分了现代物种和早期生命形式。然而,它的基本结构在30多亿年的分化进化中仍然保持不变。我们推测,这种情况将代谢网络进化的关键作用归因于(i)中心代谢物的反应性质,(ii)在进化过程中重要性保持不变的简单催化剂(如金属离子、氨基酸),以及(iii)限制其扩展的网络互连性。因此,网络结构的守恒意味着早期的生命形式已经使用了与现代物种相似的代谢反应拓扑结构。
{"title":"The evolution of the metabolic network over long timelines","authors":"Markus Ralser ,&nbsp;Sreejith J. Varma ,&nbsp;Richard A. Notebaart","doi":"10.1016/j.coisb.2021.100402","DOIUrl":"10.1016/j.coisb.2021.100402","url":null,"abstract":"<div><p>Metabolism is executed by an efficient, interconnected and ancient biochemical system, the metabolic network. Its evolutionary origins are, however, barely understood. We here discuss that because of niche adaptation, the evolutionary selection acting on the metabolic network structure distinguishes modern species and early life forms. Yet, its basic structure remained conserved over more than three billion years of diverging evolution. We speculate that this situation attributes key roles in metabolic network evolution to (i) the reaction properties of central metabolites, (ii) simple catalysts (e.g. metal ions, amino acids) whose importance remained unchanged during evolution, and (iii) the interconnectivity of the network that limits its expansion. The conservation of network structure hence implies that early life forms already used similar metabolic reaction topologies as modern species.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"28 ","pages":"Article 100402"},"PeriodicalIF":3.7,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310021000974/pdfft?md5=4bad2063148f98b62f38ae026e235900&pid=1-s2.0-S2452310021000974-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47343395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Current Opinion in Systems Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1