首页 > 最新文献

Current Opinion in Systems Biology最新文献

英文 中文
Nanoscale nuclear environments, fine-scale 3D genome organization and transcription regulation 纳米尺度的核环境,精细尺度的三维基因组组织和转录调控
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-09-01 DOI: 10.1016/j.coisb.2022.100436
Jieru Li, Alexandros Pertsinidis

Decades of in vitro biochemical reconstitution, genetics and structural biology studies have established a vast knowledge base on the molecular mechanisms of chromatin regulation and transcription. A remaining challenge is to understand how these intricate biochemical systems operate in the context of the 3D genome organization and in the crowded and compartmentalized nuclear milieu. Here we review recent progress in this area based on high-resolution imaging approaches.

几十年的体外生化重建、遗传学和结构生物学研究已经建立了染色质调控和转录的分子机制的庞大知识基础。剩下的挑战是了解这些复杂的生化系统如何在三维基因组组织的背景下以及在拥挤和分隔的核环境中运作。本文综述了基于高分辨率成像方法的这一领域的最新进展。
{"title":"Nanoscale nuclear environments, fine-scale 3D genome organization and transcription regulation","authors":"Jieru Li,&nbsp;Alexandros Pertsinidis","doi":"10.1016/j.coisb.2022.100436","DOIUrl":"10.1016/j.coisb.2022.100436","url":null,"abstract":"<div><p>Decades of <em>in vitro</em><span> biochemical reconstitution<span><span>, genetics and structural biology studies have established a vast knowledge base on the molecular mechanisms of chromatin regulation and transcription. A remaining challenge is to understand how these intricate biochemical systems operate in the context of the 3D </span>genome organization and in the crowded and compartmentalized nuclear milieu. Here we review recent progress in this area based on high-resolution imaging approaches.</span></span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100436"},"PeriodicalIF":3.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9757403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial overview: The metabolic network 编辑概述:代谢网络
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-09-01 DOI: 10.1016/j.coisb.2022.100432
Sarah-Maria Fendt, Markus Ralser
{"title":"Editorial overview: The metabolic network","authors":"Sarah-Maria Fendt,&nbsp;Markus Ralser","doi":"10.1016/j.coisb.2022.100432","DOIUrl":"10.1016/j.coisb.2022.100432","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100432"},"PeriodicalIF":3.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245231002200018X/pdfft?md5=caf2f75d1990296f6081e9b2f6af7b0d&pid=1-s2.0-S245231002200018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45964694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust cell identity specifications through transitions in the collective state of growing developmental systems 通过生长发育系统的集体状态的转变,健壮的细胞身份规范
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-09-01 DOI: 10.1016/j.coisb.2022.100437
Angel Stanoev , Aneta Koseska

Mammalian development is characterized with transitions from homogeneous populations of precursor to heterogeneous population of specified cells. We review here the main dynamical mechanisms through which such transitions are conceptualized, and discuss that the differentiation timing, robust cell-type proportions and recovery upon perturbation are emergent property of proliferating and communicating cell populations. We argue that studying developmental systems using transitions in collective system states is necessary to describe observed experimental features, and propose additionally the basis of a novel analytical method to deduce the relationship between single-cell dynamics and the collective, symmetry-broken states in cellular populations.

哺乳动物发育的特点是由同质的前体群体向异质的特定细胞群体过渡。我们在这里回顾了这些转变的主要动力学机制,并讨论了分化时间、稳健的细胞类型比例和扰动后的恢复是增殖和交流细胞群体的紧急特性。我们认为,利用集体系统状态的过渡来研究发育系统对于描述观察到的实验特征是必要的,并提出了一种新的分析方法的基础,以推断单细胞动力学与细胞群体中集体对称破碎状态之间的关系。
{"title":"Robust cell identity specifications through transitions in the collective state of growing developmental systems","authors":"Angel Stanoev ,&nbsp;Aneta Koseska","doi":"10.1016/j.coisb.2022.100437","DOIUrl":"10.1016/j.coisb.2022.100437","url":null,"abstract":"<div><p>Mammalian development is characterized with transitions from homogeneous populations of precursor to heterogeneous population of specified cells. We review here the main dynamical mechanisms through which such transitions are conceptualized, and discuss that the differentiation timing, robust cell-type proportions and recovery upon perturbation are emergent property of proliferating and communicating cell populations. We argue that studying developmental systems using transitions in collective system states is necessary to describe observed experimental features, and propose additionally the basis of a novel analytical method to deduce the relationship between single-cell dynamics and the collective, symmetry-broken states in cellular populations.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100437"},"PeriodicalIF":3.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44044764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The energetics of activator–promoter recognition 激活子-启动子识别的能量学
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-09-01 DOI: 10.1016/j.coisb.2022.100434
Hinrich Boeger

Eukaryotes and bacteria have evolved entirely different mechanisms to cope with the problem of how to reconcile regulatory specificity in transcription, the recognition of specific DNA sequences by transcriptional activators, with speed, the ability to quickly respond to environmental change. It is argued here that eukaryotes enhance the specificity of activator–promoter recognition via ATP-dependent chromatin remodeling, whereas bacteria employ allosteric effectors to control specific activator–DNA binding reactions.

真核生物和细菌已经进化出完全不同的机制来应对如何协调转录中的调节特异性问题,即转录激活子识别特定DNA序列的速度,以及快速响应环境变化的能力。本文认为真核生物通过依赖atp的染色质重塑来增强激活子-启动子识别的特异性,而细菌则利用变构效应物来控制特定的激活子- dna结合反应。
{"title":"The energetics of activator–promoter recognition","authors":"Hinrich Boeger","doi":"10.1016/j.coisb.2022.100434","DOIUrl":"10.1016/j.coisb.2022.100434","url":null,"abstract":"<div><p>Eukaryotes and bacteria have evolved entirely different mechanisms to cope with the problem of how to reconcile regulatory specificity in transcription, the recognition of specific DNA sequences<span><span> by transcriptional activators, with speed, the ability to quickly respond to environmental change. It is argued here that eukaryotes enhance the specificity of activator–promoter recognition via ATP-dependent </span>chromatin remodeling<span>, whereas bacteria employ allosteric effectors to control specific activator–DNA binding reactions.</span></span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100434"},"PeriodicalIF":3.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42427555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Page 编委会页面
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-09-01 DOI: 10.1016/S2452-3100(22)00025-7
{"title":"Editorial Board Page","authors":"","doi":"10.1016/S2452-3100(22)00025-7","DOIUrl":"https://doi.org/10.1016/S2452-3100(22)00025-7","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"31 ","pages":"Article 100439"},"PeriodicalIF":3.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000257/pdfft?md5=1ec75f7bbc03f7a51842136dda84503c&pid=1-s2.0-S2452310022000257-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137355861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Board Page 编委会页面
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/S2452-3100(22)00014-2
{"title":"Editorial Board Page","authors":"","doi":"10.1016/S2452-3100(22)00014-2","DOIUrl":"https://doi.org/10.1016/S2452-3100(22)00014-2","url":null,"abstract":"","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100428"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000142/pdfft?md5=3e66d4601abd1b70c484795123c5bd0b&pid=1-s2.0-S2452310022000142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137146922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced underground metabolism challenges life at high temperature–metabolic thermoadaptation in hyperthermophilic Archaea 增强的地下代谢挑战了超嗜热古菌高温代谢热适应的生命
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100423
Christian Schmerling , Theresa Kouril , Jacky Snoep , Christopher Bräsen , Bettina Siebers

The text-book picture of a perfect, well organised metabolism with highly specific enzymes, is challenged by non-enzymatic reactions and promiscuous enzymes. This, so-called ‘underground metabolism’, is a special challenge for hyperthermophilic Archaea that thrive at temperatures above 80 °C and possess modified central metabolic pathways often with promiscuous enzymes. Hence, the question arises how extremely thermophilic Archaea can operate their unusual metabolism at temperatures where many pathway intermediates are unstable? We herein discuss current insights in the underground metabolism and metabolic thermoadaptation of (hyper)thermophilic Archaea. So far, only a few repair enzymes and salvaging pathways have been investigated in Archaea. Studies of the central carbohydrate metabolism indicate that a number of different strategies have evolved: 1) reduction of the concentration of unstable metabolites, 2) different pathway topologies are used with newly induced enzymes, and 3) damaged metabolites are removed via new metabolic pathways.

教科书上描述的由高度特异的酶组成的完美的、组织良好的新陈代谢,正受到非酶反应和混杂酶的挑战。这种所谓的“地下代谢”对嗜热古菌来说是一个特殊的挑战,这些古菌在80°C以上的温度下繁殖,并且具有修改的中心代谢途径,通常使用混杂的酶。因此,问题出现了,极端嗜热的古生菌如何在许多途径中间体不稳定的温度下进行它们不寻常的代谢?我们在此讨论了当前的见解在地下代谢和代谢热适应(超)嗜热古菌。迄今为止,在古细菌中只研究了少数修复酶和修复途径。对中心碳水化合物代谢的研究表明,许多不同的策略已经进化:1)降低不稳定代谢物的浓度,2)新诱导的酶使用不同的途径拓扑,以及3)通过新的代谢途径去除受损代谢物。
{"title":"Enhanced underground metabolism challenges life at high temperature–metabolic thermoadaptation in hyperthermophilic Archaea","authors":"Christian Schmerling ,&nbsp;Theresa Kouril ,&nbsp;Jacky Snoep ,&nbsp;Christopher Bräsen ,&nbsp;Bettina Siebers","doi":"10.1016/j.coisb.2022.100423","DOIUrl":"10.1016/j.coisb.2022.100423","url":null,"abstract":"<div><p><span><span>The text-book picture of a perfect, well organised metabolism with highly specific enzymes<span>, is challenged by non-enzymatic reactions and promiscuous enzymes. This, so-called ‘underground metabolism’, is a special challenge for hyperthermophilic Archaea that thrive at temperatures above 80 °C and possess modified central metabolic pathways often with promiscuous enzymes. Hence, the question arises how extremely </span></span>thermophilic Archaea can operate their unusual metabolism at temperatures where many pathway intermediates are unstable? We herein discuss current insights in the underground metabolism and metabolic </span>thermoadaptation<span><span> of (hyper)thermophilic Archaea. So far, only a few repair enzymes and salvaging pathways have been investigated in Archaea. Studies of the central </span>carbohydrate metabolism indicate that a number of different strategies have evolved: 1) reduction of the concentration of unstable metabolites, 2) different pathway topologies are used with newly induced enzymes, and 3) damaged metabolites are removed via new metabolic pathways.</span></p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100423"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46353795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthetic metabolism approaches: A valuable resource for systems biology 合成代谢方法:系统生物学的宝贵资源
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100417
Sebastian Wenk , Nico J. Claassens , Steffen N. Lindner

Synthetic biology modifies biological systems with the aim of creating new biological parts, devices, and even organisms. Systems biology deciphers the design principles of biological systems trying to derive the mathematical logic behind biological processes. Although different in their respective research approaches and questions, both disciplines are clearly interconnected. Without sufficient understanding of the biological system, synthetic biology studies cannot be properly designed and conducted. On the other hand, systems biology can profit from new biological systems generated by synthetic biology approaches, which can reveal important insights into cellular processes and allow a better understanding of the principles of life. In this article, we present state-of-the-art synthetic biology approaches that focus on the engineering of synthetic metabolism in microbial hosts and show how their implementation has led to new fundamental discoveries on enzyme reversibility, promiscuity, and “underground metabolism”. We further discuss how the combination of rational engineering and adaptive laboratory evolution has enabled the generation of microbes with a synthetic central metabolism, leading to completely new metabolic phenotypes. These organisms provide a great resource for future studies to deepen our systems-level understanding on the principles that govern metabolic networks and evolution.

合成生物学修改生物系统,目的是创造新的生物部件、装置,甚至生物体。系统生物学破译生物系统的设计原理,试图推导出生物过程背后的数学逻辑。虽然他们各自的研究方法和问题不同,但这两个学科显然是相互联系的。没有对生物系统的充分了解,合成生物学的研究就不能正确地设计和进行。另一方面,系统生物学可以从合成生物学方法产生的新生物系统中获益,这可以揭示对细胞过程的重要见解,并允许更好地理解生命原理。在本文中,我们介绍了最先进的合成生物学方法,重点关注微生物宿主的合成代谢工程,并展示了它们的实施如何导致酶可逆性,滥交和“地下代谢”的新基础发现。我们进一步讨论了合理工程和适应性实验室进化的结合如何使具有合成中心代谢的微生物产生,从而导致全新的代谢表型。这些生物为未来的研究提供了巨大的资源,以加深我们对管理代谢网络和进化原理的系统级理解。
{"title":"Synthetic metabolism approaches: A valuable resource for systems biology","authors":"Sebastian Wenk ,&nbsp;Nico J. Claassens ,&nbsp;Steffen N. Lindner","doi":"10.1016/j.coisb.2022.100417","DOIUrl":"10.1016/j.coisb.2022.100417","url":null,"abstract":"<div><p>Synthetic biology modifies biological systems with the aim of creating new biological parts, devices, and even organisms. Systems biology deciphers the design principles of biological systems trying to derive the mathematical logic behind biological processes. Although different in their respective research approaches and questions, both disciplines are clearly interconnected. Without sufficient understanding of the biological system, synthetic biology studies cannot be properly designed and conducted. On the other hand, systems biology can profit from new biological systems generated by synthetic biology approaches, which can reveal important insights into cellular processes and allow a better understanding of the principles of life. In this article, we present state-of-the-art synthetic biology approaches that focus on the engineering of synthetic metabolism in microbial hosts and show how their implementation has led to new fundamental discoveries on enzyme reversibility, promiscuity, and “underground metabolism”. We further discuss how the combination of rational engineering and adaptive laboratory evolution has enabled the generation of microbes with a synthetic central metabolism, leading to completely new metabolic phenotypes. These organisms provide a great resource for future studies to deepen our systems-level understanding on the principles that govern metabolic networks and evolution.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100417"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000038/pdfft?md5=c9f96786811b96040d981e16ebdbfe34&pid=1-s2.0-S2452310022000038-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46772608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metabolic dynamics during the cell cycle 细胞周期中的代谢动力学
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100415
Andre Zylstra, Matthias Heinemann

While we have a solid understanding of the cell biological and biochemical control aspects of the eukaryotic cell growth and division process, much less is known about the metabolic and biosynthetic dynamics during the cell cycle. Here, we review recent discoveries made at the single-cell and population level that show that budding yeast (Saccharomyces cerevisiae) metabolism oscillates in synchrony with the cell cycle in actively dividing cells, as well as independently when the cell cycle is halted. In fact, emerging evidence suggests that the cell cycle-independent metabolic oscillations interact with elements of the cell cycle machinery via several possible mechanisms. Furthermore, recent reports indicate that different biosynthetic processes exhibit temporally changing activity patterns during the cell cycle. Thus, resources are drawn from primary metabolism in a dynamic manner, potentially giving rise to metabolic oscillations. Finally, we highlight work with mammalian cells indicating that similar metabolic dynamics might also exist in higher eukaryotes.

虽然我们对真核细胞生长和分裂过程的细胞生物学和生化控制方面有了扎实的了解,但对细胞周期中的代谢和生物合成动力学知之甚少。在这里,我们回顾了最近在单细胞和群体水平上的发现,这些发现表明出芽酵母(Saccharomyces cerevisiae)的代谢在活跃分裂的细胞中与细胞周期同步振荡,并且在细胞周期停止时独立振荡。事实上,新出现的证据表明,细胞周期独立的代谢振荡通过几种可能的机制与细胞周期机械的元件相互作用。此外,最近的报告表明,在细胞周期中,不同的生物合成过程表现出暂时变化的活动模式。因此,资源是以一种动态的方式从初级代谢中提取的,这可能会引起代谢振荡。最后,我们强调了哺乳动物细胞的工作,表明类似的代谢动力学也可能存在于高等真核生物中。
{"title":"Metabolic dynamics during the cell cycle","authors":"Andre Zylstra,&nbsp;Matthias Heinemann","doi":"10.1016/j.coisb.2022.100415","DOIUrl":"10.1016/j.coisb.2022.100415","url":null,"abstract":"<div><p>While we have a solid understanding of the cell biological and biochemical control aspects of the eukaryotic cell growth and division process, much less is known about the metabolic and biosynthetic dynamics during the cell cycle. Here, we review recent discoveries made at the single-cell and population level that show that budding yeast (<em>Saccharomyces cerevisiae</em>) metabolism oscillates in synchrony with the cell cycle in actively dividing cells, as well as independently when the cell cycle is halted. In fact, emerging evidence suggests that the cell cycle-independent metabolic oscillations interact with elements of the cell cycle machinery via several possible mechanisms. Furthermore, recent reports indicate that different biosynthetic processes exhibit temporally changing activity patterns during the cell cycle. Thus, resources are drawn from primary metabolism in a dynamic manner, potentially giving rise to metabolic oscillations. Finally, we highlight work with mammalian cells indicating that similar metabolic dynamics might also exist in higher eukaryotes.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100415"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000014/pdfft?md5=0ceeea28044602a21abcb5841856610a&pid=1-s2.0-S2452310022000014-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41405427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Organelle dysfunction and its contribution to metabolic impairments in aging and age-related diseases 细胞器功能障碍及其对衰老和年龄相关疾病代谢损伤的贡献
IF 3.7 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2022-06-01 DOI: 10.1016/j.coisb.2022.100416
Julia C. Heiby, Alessandro Ori

Aging is a major risk factor for most diseases. Pathways regulating metabolism, including nutrient sensing, energy production, and synthesis and degradation of macromolecules, have been identified as key regulators of organismal lifespan and implicated in several late-onset diseases, such as most neurodegenerative disorders. In this review, we focus on emerging evidence that links the remodeling of key organelles, namely mitochondria and lysosomes, to metabolic alterations that manifest during the aging process. We highlight data demonstrating a reciprocal interaction between organelle (dys)-function and protein homeostasis in aging. We also discuss examples of cell-type-specific metabolic alterations that can influence organ function locally and whole organism aging via inter-tissue communication. Finally, we propose how emerging methods could enable to characterize in vivo the impact of aging on organelle composition and function.

衰老是大多数疾病的主要危险因素。调节代谢的途径,包括营养感知、能量产生、大分子的合成和降解,已被确定为生物体寿命的关键调节因子,并涉及几种晚发性疾病,如大多数神经退行性疾病。在这篇综述中,我们关注的是将关键细胞器(即线粒体和溶酶体)的重塑与衰老过程中出现的代谢改变联系起来的新证据。我们强调的数据表明,细胞器(天)功能和蛋白质稳态之间的相互作用在衰老。我们还讨论了细胞类型特异性代谢改变的例子,这些代谢改变可以通过组织间通信影响局部器官功能和整个生物体衰老。最后,我们提出了新兴方法如何能够表征衰老对细胞器组成和功能的体内影响。
{"title":"Organelle dysfunction and its contribution to metabolic impairments in aging and age-related diseases","authors":"Julia C. Heiby,&nbsp;Alessandro Ori","doi":"10.1016/j.coisb.2022.100416","DOIUrl":"10.1016/j.coisb.2022.100416","url":null,"abstract":"<div><p>Aging is a major risk factor for most diseases. Pathways regulating metabolism, including nutrient sensing, energy production, and synthesis and degradation of macromolecules, have been identified as key regulators of organismal lifespan and implicated in several late-onset diseases, such as most neurodegenerative disorders. In this review, we focus on emerging evidence that links the remodeling of key organelles, namely mitochondria and lysosomes, to metabolic alterations that manifest during the aging process. We highlight data demonstrating a reciprocal interaction between organelle (dys)-function and protein homeostasis in aging. We also discuss examples of cell-type-specific metabolic alterations that can influence organ function locally and whole organism aging via inter-tissue communication. Finally, we propose how emerging methods could enable to characterize <em>in vivo</em> the impact of aging on organelle composition and function.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"30 ","pages":"Article 100416"},"PeriodicalIF":3.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452310022000026/pdfft?md5=f704136af8bba1493575582fb5a97f28&pid=1-s2.0-S2452310022000026-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44582994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Current Opinion in Systems Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1