With the increasing prevalence of police interventions implemented in micro hot-spots of crime, the accuracy with which officer foot patrols can be measured is increasingly important for the robust evaluation of such strategies. However, it is currently unknown how the accuracy of GPS traces impact upon our understanding of where officers are at a given time and how this varies for different GPS refresh rates. Most existing studies that use GPS data fail to acknowledge this. This study uses GPS data from police officer radios and ground truth data to estimate how accurate GPS data are for different GPS refresh rates. The similarity of the assumed paths are quantitatively evaluated and the analysis shows that different refresh rates lead to diverging estimations of where officers have patrolled. These results have significant implications for the measurement of police patrols in micro-places and evaluations of micro-place based interventions.
Governments around the world have enforced strict guidelines on social interaction and mobility to control the spread of the COVID-19 virus. Evidence has begun to emerge which suggests that such dramatic changes in people's routine activities have yielded similarly dramatic changes in criminal behavior. This study represents the first 'look back' on six months of the nationwide lockdown in England and Wales. Using open police-recorded crime trends, we provide a comparison between expected and observed crime rates for fourteen different offence categories between March and August, 2020. We find that most crime types experienced sharp, short-term declines during the first full month of lockdown. This was followed by a gradual resurgence as restrictions were relaxed. Major exceptions include anti-social behavior and drug crimes. Findings shed light on the opportunity structures for crime and the nuances of using police records to study crime during the pandemic.
Supplementary information: The online version contains supplementary material available at 10.1186/s40163-021-00142-z.
Objective: The opportunity for web camera theft increased globally as institutions of higher education transitioned to remote learning during COVID-19. Given the thousands of cameras currently installed in classrooms, many with little protection, the present study tests the effectiveness of anti-theft signage for preventing camera theft.
Methods: Examined web camera theft at a southern, public university located in the United States of America by randomly assigning N = 104 classrooms to receive either anti-theft signage or no signage. Camera theft was analyzed using Blaker's exact test.
Results: Classrooms not receiving anti-theft signage (control) were 3.42 times more likely to exhibit web camera theft than classrooms receiving anti-theft signage (medium effect size).
Conclusions: Using classrooms as the unit of analysis presents new opportunities for not only future crime prevention experiments, but also improving campus safety and security. Also, preventing web camera theft on campus is both fiscally and socially responsible, saving money and ensuring inclusivity for remote learners.
Much research has shown that the first lockdowns imposed in response to the COVID-19 pandemic were associated with changes in routine activities and, therefore, changes in crime. While several types of violent and property crime decreased immediately after the first lockdown, online crime rates increased. Nevertheless, little research has explored the relationship between multiple lockdowns and crime in the mid-term. Furthermore, few studies have analysed potentially contrasting trends in offline and online crimes using the same dataset. To fill these gaps in research, the present article employs interrupted time-series analysis to examine the effects on offline and online crime of the three lockdown orders implemented in Northern Ireland. We analyse crime data recorded by the police between April 2015 and May 2021. Results show that many types of traditional offline crime decreased after the lockdowns but that they subsequently bounced back to pre-pandemic levels. In contrast, results appear to indicate that cyber-enabled fraud and cyber-dependent crime rose alongside lockdown-induced changes in online habits and remained higher than before COVID-19. It is likely that the pandemic accelerated the long-term upward trend in online crime. We also find that lockdowns with stay-at-home orders had a clearer impact on crime than those without. Our results contribute to understanding how responses to pandemics can influence crime trends in the mid-term as well as helping identify the potential long-term effects of the pandemic on crime, which can strengthen the evidence base for policy and practice.