Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Embedded computers and networks monitor and control the physical processes, usually with feedback loops where physical processes affect computations and vice versa. The economic and societal potential of such systems is vastly greater than what has been realized, and major investments are being made worldwide to develop the technology. There are considerable challenges, particularly because the physical components of such systems introduce safety and reliability requirements qualitatively different from those in general- purpose computing. Moreover, physical components are qualitatively different from object-oriented software components. Standard abstractions based on method calls and threads do not work. This paper examines the challenges in designing such systems, and in particular raises the question of whether today's computing and networking technologies provide an adequate foundation for CPS. It concludes that it will not be sufficient to improve design processes, raise the level of abstraction, or verify (formally or otherwise) designs that are built on today's abstractions. To realize the full potential of CPS, we will have to rebuild computing and networking abstractions. These abstractions will have to embrace physical dynamics and computation in a unified way.
{"title":"Cyber Physical Systems: Design Challenges","authors":"Edward A. Lee","doi":"10.1109/ISORC.2008.25","DOIUrl":"https://doi.org/10.1109/ISORC.2008.25","url":null,"abstract":"Cyber-Physical Systems (CPS) are integrations of computation and physical processes. Embedded computers and networks monitor and control the physical processes, usually with feedback loops where physical processes affect computations and vice versa. The economic and societal potential of such systems is vastly greater than what has been realized, and major investments are being made worldwide to develop the technology. There are considerable challenges, particularly because the physical components of such systems introduce safety and reliability requirements qualitatively different from those in general- purpose computing. Moreover, physical components are qualitatively different from object-oriented software components. Standard abstractions based on method calls and threads do not work. This paper examines the challenges in designing such systems, and in particular raises the question of whether today's computing and networking technologies provide an adequate foundation for CPS. It concludes that it will not be sufficient to improve design processes, raise the level of abstraction, or verify (formally or otherwise) designs that are built on today's abstractions. To realize the full potential of CPS, we will have to rebuild computing and networking abstractions. These abstractions will have to embrace physical dynamics and computation in a unified way.","PeriodicalId":378715,"journal":{"name":"2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC)","volume":"374 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123408954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Roy, J. Kinnebrew, N. Shankaran, Gautam Biswas, D. Schmidt
Effective resource management for distributed real-time embedded (DRE) systems is hard due to their unique characteristics, including (1) constraints in multiple resources and (2) highly fluctuating resource availability and input workload. DRE systems can benefit from a middleware framework that enables adaptive resource management algorithms to ensure application QoS requirements are met. This paper identifies key challenges in designing and extending resource allocation algorithms for DRE systems. We present an empirical study of bin-packing algorithms enhanced to meet these challenges. Our analysis identifies input application patterns that help generate appropriate heuristics for using these algorithms effectively in DRE systems.
{"title":"Toward Effective Multi-Capacity Resource Allocation in Distributed Real-Time and Embedded Systems","authors":"N. Roy, J. Kinnebrew, N. Shankaran, Gautam Biswas, D. Schmidt","doi":"10.1109/ISORC.2008.72","DOIUrl":"https://doi.org/10.1109/ISORC.2008.72","url":null,"abstract":"Effective resource management for distributed real-time embedded (DRE) systems is hard due to their unique characteristics, including (1) constraints in multiple resources and (2) highly fluctuating resource availability and input workload. DRE systems can benefit from a middleware framework that enables adaptive resource management algorithms to ensure application QoS requirements are met. This paper identifies key challenges in designing and extending resource allocation algorithms for DRE systems. We present an empirical study of bin-packing algorithms enhanced to meet these challenges. Our analysis identifies input application patterns that help generate appropriate heuristics for using these algorithms effectively in DRE systems.","PeriodicalId":378715,"journal":{"name":"2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131928886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}