Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487966
Valentina Gregori, B. Caputo, A. Gijsberts
The application of machine learning to recognize hand movements from surface electromyography has led to promising academic results. Unfortunately, it has proven difficult to translate these results in better control methods for the end-users of upper-limb prostheses. Recent studies have pointed out that common offline performance metrics, such as classification accuracy, are not correlated with real controllability of the prosthesis. In this paper, we investigate the cause that learned models start to fail when applied outside the constrained laboratory setting. We performed several analyses at the hand of a dedicated data acquisition composed of a typical academic training session in the first phase and a set of activities of daily living in a home setting afterwards. Our analysis confirms that a model trained in the former setting performs poorly when applied in a home environment. The cause for this degradation is that the distribution of myoelectric data changes between both settings, thus violating the typical assumption in statistical learning theory that train and test data come from the same distribution. This problem persists even when adding data acquired in some home activities to classify others. Our result not only confirms the limited importance of offline performance metrics for real prosthesis usability, but also highlights the difficulties machine learning based approaches will need to overcome to become practically relevant.
{"title":"The Difficulty of Recognizing Grasps from sEMG during Activities of Daily Living","authors":"Valentina Gregori, B. Caputo, A. Gijsberts","doi":"10.1109/BIOROB.2018.8487966","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487966","url":null,"abstract":"The application of machine learning to recognize hand movements from surface electromyography has led to promising academic results. Unfortunately, it has proven difficult to translate these results in better control methods for the end-users of upper-limb prostheses. Recent studies have pointed out that common offline performance metrics, such as classification accuracy, are not correlated with real controllability of the prosthesis. In this paper, we investigate the cause that learned models start to fail when applied outside the constrained laboratory setting. We performed several analyses at the hand of a dedicated data acquisition composed of a typical academic training session in the first phase and a set of activities of daily living in a home setting afterwards. Our analysis confirms that a model trained in the former setting performs poorly when applied in a home environment. The cause for this degradation is that the distribution of myoelectric data changes between both settings, thus violating the typical assumption in statistical learning theory that train and test data come from the same distribution. This problem persists even when adding data acquired in some home activities to classify others. Our result not only confirms the limited importance of offline performance metrics for real prosthesis usability, but also highlights the difficulties machine learning based approaches will need to overcome to become practically relevant.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123130427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8488778
Kevin Stein, K. Mombaur
The estimation of acting joint torques and ground reaction forces is of particular interest for the analysis and training of athletic human motions. Modern IMU-based motion capture systems can record the kinematics of motions without the constraint of a fixed capture volume but with a lower accuracy when compared to marker-based systems, however they can give no information about the underlying dynamics. We propose a general approach that allows us to analyze such motion recordings for which external ground reaction force measurements are not possible. To achieve this we use dynamically-consistent optimization to generate a physically valid least-squares fit of a dynamic model of the subject to the recorded motion. We demonstrate the method by fitting and analyzing a cartwheel motion. The resulting joint torques allow us to understand how the different joints are actuated throughout the motion and reconstructed contact forces give insight about the interaction with the environment. Calculation of the forces and torques are of great value during training of athletic motions both to improve technique and to prevent injury. Additionally we can estimate the deviation between the measurement and the physically valid fit.
{"title":"Optimization-Based Analysis of a Cartwheel","authors":"Kevin Stein, K. Mombaur","doi":"10.1109/BIOROB.2018.8488778","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488778","url":null,"abstract":"The estimation of acting joint torques and ground reaction forces is of particular interest for the analysis and training of athletic human motions. Modern IMU-based motion capture systems can record the kinematics of motions without the constraint of a fixed capture volume but with a lower accuracy when compared to marker-based systems, however they can give no information about the underlying dynamics. We propose a general approach that allows us to analyze such motion recordings for which external ground reaction force measurements are not possible. To achieve this we use dynamically-consistent optimization to generate a physically valid least-squares fit of a dynamic model of the subject to the recorded motion. We demonstrate the method by fitting and analyzing a cartwheel motion. The resulting joint torques allow us to understand how the different joints are actuated throughout the motion and reconstructed contact forces give insight about the interaction with the environment. Calculation of the forces and torques are of great value during training of athletic motions both to improve technique and to prevent injury. Additionally we can estimate the deviation between the measurement and the physically valid fit.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114233209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487633
Kiyoung Kim, H. Woo, Jungwook Suh
This paper deals with the design, modelling, fabrication, and experiments of a novel continuum robot that can be used for cardiovascular interventions. In this paper, a new design of bending joints of the continuum robot and its kinematical modelling are proposed. The bending joints of the proposed robot are designed to be easy to miniaturize and have a wide motion range. The continuum robot consists of an inner guide and an outer guide, each having two degrees of freedom (DOF). The 2DOF bending joints are driven by antagonistic actuation and the actuation part of the continuum robot is implemented to control the stiffness of the bending joints. When the pretensions of the cables of the bending joints are adjusted, the structural stiffness of the bending joints can be controlled. In this paper, the entire system of the continuum robot has been implemented and the basic performance of the proposed continuum robot has been verified. The proposed robot was confirmed to be bent actively in the S-shape curve.
{"title":"Design and Evaluation of a Continuum Robot with Discreted link joints for Cardiovascular Interventions","authors":"Kiyoung Kim, H. Woo, Jungwook Suh","doi":"10.1109/BIOROB.2018.8487633","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487633","url":null,"abstract":"This paper deals with the design, modelling, fabrication, and experiments of a novel continuum robot that can be used for cardiovascular interventions. In this paper, a new design of bending joints of the continuum robot and its kinematical modelling are proposed. The bending joints of the proposed robot are designed to be easy to miniaturize and have a wide motion range. The continuum robot consists of an inner guide and an outer guide, each having two degrees of freedom (DOF). The 2DOF bending joints are driven by antagonistic actuation and the actuation part of the continuum robot is implemented to control the stiffness of the bending joints. When the pretensions of the cables of the bending joints are adjusted, the structural stiffness of the bending joints can be controlled. In this paper, the entire system of the continuum robot has been implemented and the basic performance of the proposed continuum robot has been verified. The proposed robot was confirmed to be bent actively in the S-shape curve.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"58 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120994069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487903
Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh
In this paper, we present the design and characterization of the ExoBoot, a soft inflatable robotic boot for assisting ankle plantarflexion during walking. The ExoBoot integrates a soft textile-based actuator and an IMU sensor into a textile boot, making it low-profile and lightweight. The inflatable actuator generates assistive plantarflexion torque when pressurized by bending on top of the boot. We characterize the torque generated by the ExoBoot at various pressures and ankle angles, achieving a maximum torque of 39 Nm at 483 kPa (70 psi) and 60 degrees ankle angle. In order to evaluate the performance of the ExoBoot during walking, a pilot study with one healthy subject was conducted. Actuation is triggered by an open loop pressure controller, based on the ankle angular velocity measured by an IMU, using high flow rate solenoid valves. At the peak of active assistance, pressure in the actuator reaches 75% of the supply pressure, and maximum torque applied on the ankle is estimated to be 23 Nm. These results demonstrate potential for the ExoBoot to reduce the metabolic cost of walking.
{"title":"ExoBoot, a Soft Inflatable Robotic Boot to Assist Ankle During Walking: Design, Characterization and Preliminary Tests","authors":"Jinwon Chung, Roman Heimgartner, Ciarán T. O’Neill, Nathan S. Phipps, C. Walsh","doi":"10.1109/BIOROB.2018.8487903","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487903","url":null,"abstract":"In this paper, we present the design and characterization of the ExoBoot, a soft inflatable robotic boot for assisting ankle plantarflexion during walking. The ExoBoot integrates a soft textile-based actuator and an IMU sensor into a textile boot, making it low-profile and lightweight. The inflatable actuator generates assistive plantarflexion torque when pressurized by bending on top of the boot. We characterize the torque generated by the ExoBoot at various pressures and ankle angles, achieving a maximum torque of 39 Nm at 483 kPa (70 psi) and 60 degrees ankle angle. In order to evaluate the performance of the ExoBoot during walking, a pilot study with one healthy subject was conducted. Actuation is triggered by an open loop pressure controller, based on the ankle angular velocity measured by an IMU, using high flow rate solenoid valves. At the peak of active assistance, pressure in the actuator reaches 75% of the supply pressure, and maximum torque applied on the ankle is estimated to be 23 Nm. These results demonstrate potential for the ExoBoot to reduce the metabolic cost of walking.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114284654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487207
R. Djajadiningrat, W. Roozing, N. Tsagarakis
This paper presents the optimisation of explosive jumping motions on a 3-DoF leg prototype. The leg is based on the recently introduced asymmetric compliant actuator scheme, in which a series-elastic main drive is augmented with a parallel adjustable compliant branch with significantly different stiffness and energy storage capacity properties. The leg prototype implements two such actuation configurations, one of which includes a biarticulated branch, and they are compared to conventional series-elastic based actuation. An optimisation problem is formulated to optimise the joint trajectories and elastic element pretension to maximise jumping height. A simulation study demonstrates that the biarticulated configuration yields maximum jumping height, and that it achieves the highest peak joint power. Compared to series-elastic based actuation, the augmented leg jumps 4% higher with a monoarticulated parallel compliance configuration while using less energy, and over 10% higher in biarticulated configuration.
{"title":"Explosive Motions with Compliant Actuation Arrangements in Articulated Robots","authors":"R. Djajadiningrat, W. Roozing, N. Tsagarakis","doi":"10.1109/BIOROB.2018.8487207","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487207","url":null,"abstract":"This paper presents the optimisation of explosive jumping motions on a 3-DoF leg prototype. The leg is based on the recently introduced asymmetric compliant actuator scheme, in which a series-elastic main drive is augmented with a parallel adjustable compliant branch with significantly different stiffness and energy storage capacity properties. The leg prototype implements two such actuation configurations, one of which includes a biarticulated branch, and they are compared to conventional series-elastic based actuation. An optimisation problem is formulated to optimise the joint trajectories and elastic element pretension to maximise jumping height. A simulation study demonstrates that the biarticulated configuration yields maximum jumping height, and that it achieves the highest peak joint power. Compared to series-elastic based actuation, the augmented leg jumps 4% higher with a monoarticulated parallel compliance configuration while using less energy, and over 10% higher in biarticulated configuration.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121869944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487219
Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura
Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.
{"title":"Hollow Pneumatic Artificial Muscles with Air Cylinder: Improvement for compatibility of high durability and high efficiency","authors":"Yasuyuki Yamada, A. Kojima, Yutaro Higashi, M. Okui, Taro Nakamura","doi":"10.1109/BIOROB.2018.8487219","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487219","url":null,"abstract":"Pneumatic soft actuators has been developed to improved characteristics, such as operating flexibility, low weight, and high output etc. However, the application range of these artificial muscles has been limited by their fragility, the size of pneumatic source and the system size required to control the position and force. Therefore, this research proposes hollow artificial muscles with air cylinder that is high durability and driven with less air. Furthermore, this actuator control both stiffness and displacement independently as single mechanical element.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133732482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8488085
Juri Taborri, Ilaria Mileti, Z. Prete, S. Rossi, E. Palermo
Aging causes a worsening in muscle system, which could cause balance impairments, increasing the risk of falls. The study aims at evaluating the effects of aging on muscle activation in response to a yaw rotation imposed by the RotoBiT1D. Eight younger and eight older adults were enrolled in the study. A right sigmoidal rotation of 55° around the yaw axis was imposed to the subject by means of the RotoBiT1D platform in two velocity conditions, characterized by an angular velocity peak equal to 80¼/s and 100 °/s, respectively. The activations of 16 bilateral muscles of upper body were recorded through wireless surface electromyography. A Non-Negative Matrix Factorization was performed to extract the muscle synergies. The number of muscle synergies was selected by using the Variability Account For. The cosine of similarity was computed for the quantification of intra-group and inter-group similarity related to the muscle synergy vectors. The number of muscle synergies ranged from 4 to 6 in younger and from 3 to 6 in older, even though no statistical difference was found between groups or velocity conditions. As regards intra-group similarity, younger adults showed values always above the similarity threshold; while a lower similarity was observed in older adults, confirming the heterogeneity of postural response. The overall structure of muscle synergy vectors was not similar between groups and the inter-group similarity decreased with the increase of the velocity. The differences were greater in synergies involving head and upper limb muscles. Findings unveiled a different muscle synergy organization in terms of muscle synergy vectors. Such a different organization calls for a deeper investigation towards the aim of identifying causes of fall in elderly.
{"title":"Yaw Postural Perturbation Through Robotic Platform: Aging Effects on Muscle Synergies","authors":"Juri Taborri, Ilaria Mileti, Z. Prete, S. Rossi, E. Palermo","doi":"10.1109/BIOROB.2018.8488085","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8488085","url":null,"abstract":"Aging causes a worsening in muscle system, which could cause balance impairments, increasing the risk of falls. The study aims at evaluating the effects of aging on muscle activation in response to a yaw rotation imposed by the RotoBiT1D. Eight younger and eight older adults were enrolled in the study. A right sigmoidal rotation of 55° around the yaw axis was imposed to the subject by means of the RotoBiT1D platform in two velocity conditions, characterized by an angular velocity peak equal to 80¼/s and 100 °/s, respectively. The activations of 16 bilateral muscles of upper body were recorded through wireless surface electromyography. A Non-Negative Matrix Factorization was performed to extract the muscle synergies. The number of muscle synergies was selected by using the Variability Account For. The cosine of similarity was computed for the quantification of intra-group and inter-group similarity related to the muscle synergy vectors. The number of muscle synergies ranged from 4 to 6 in younger and from 3 to 6 in older, even though no statistical difference was found between groups or velocity conditions. As regards intra-group similarity, younger adults showed values always above the similarity threshold; while a lower similarity was observed in older adults, confirming the heterogeneity of postural response. The overall structure of muscle synergy vectors was not similar between groups and the inter-group similarity decreased with the increase of the velocity. The differences were greater in synergies involving head and upper limb muscles. Findings unveiled a different muscle synergy organization in terms of muscle synergy vectors. Such a different organization calls for a deeper investigation towards the aim of identifying causes of fall in elderly.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"30 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113987832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487183
M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim
Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.
{"title":"Intestinal Tattooing Mechanism Integrated with Active Wireless Capsule Endoscope","authors":"M. Hoang, Viet Ha Le, Jayoung Kim, Eunpyo Choi, Byungjeon Kang, Jong-Oh Park, Chang-sei Kim","doi":"10.1109/BIOROB.2018.8487183","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487183","url":null,"abstract":"Recently, a wireless capsule endoscope with active locomotion has become an effective endoscopic method for diagnosis and treatment of diseases of gastrointestinal (GI) tract. Various modules such as biopsy and drug delivery were developed for the wireless capsule endoscope (WCE) to extend its application. In this paper, we present a marking module socalled tattooing module for WCE to localize the lesions and tumors in digestive organs before the laparoscopic surgery. The WCE with tattooing module is manipulated by an Electromagnetic Actuation (EMA) system, where a moderate magnetic field intensity is generated to drive the WCE reaching to a target of the digestive organs. The tattooing module is capable of stowing the needle inside the WCE's body to avoid pathway organs damage during locomotion and extruding to puncture the target for tattooing. The magnetic field is controlled to activate the micro-reed switch and triggers a chemical reaction that generates gas pressure. The produced gas increases the pressure in the propellant room and pushes the piston to eject the ink into the target. The prototype of the tattooing capsule endoscope is fabricated with dimension of 13 mm in diameter and 33 mm in length. The working principle and the mechanism of the tattooing module are suggested and the feasibility test with the prototype is demonstrated through in-vitro experiments.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115509584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487191
Massimo Sartori, D. Farina
Upper limb loss substantially impacts on the quality of life of thousands of individuals worldwide. Current advanced treatments rely on myoelectric prostheses controlled by electromyograms (EMG). Despite advances in surgical procedures (i.e. targeted muscle reinnervation) as well as in electrode design and bio-electric signal sampling, current myocontrol schemes provide limited re-gain of functionality and lack of bio-mimesis. Current solutions create mappings between EMG and prosthesis joint angles, disregarding the underlying neuromusculoskeletal processes. The poor performance of these approaches determines high rejection rates (40-50%) of myoelectric bionic limbs. This paper presents a biomimetic paradigm for active prosthesis control. It encompasses a modelling formulation that simulates the amputee's phantom limb musculoskeletal dynamics as controlled by high-density EMG-extracted neural activations to muscles. We demonstrate how this technique can be applied to a transhumeral amputee offline to decode musculoskeletal function in the phantom elbow and wrist offline. Moreover, we provide preliminary data showing how this technique can be operated online on intact-limbed individuals. The proposed paradigm represents an important step towards next-generation bionic limbs that can mimic human biological limb functionality and robustness.
{"title":"Estimation of Phantom Limb Musculoskeletal Mechanics After Targeted Muscle Reinnervation: Towards Online Model-Based Control of Myoelectric Bionic Limbs* Resrach supported by ERC Advanced Grant DEMOVE (267888).","authors":"Massimo Sartori, D. Farina","doi":"10.1109/BIOROB.2018.8487191","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487191","url":null,"abstract":"Upper limb loss substantially impacts on the quality of life of thousands of individuals worldwide. Current advanced treatments rely on myoelectric prostheses controlled by electromyograms (EMG). Despite advances in surgical procedures (i.e. targeted muscle reinnervation) as well as in electrode design and bio-electric signal sampling, current myocontrol schemes provide limited re-gain of functionality and lack of bio-mimesis. Current solutions create mappings between EMG and prosthesis joint angles, disregarding the underlying neuromusculoskeletal processes. The poor performance of these approaches determines high rejection rates (40-50%) of myoelectric bionic limbs. This paper presents a biomimetic paradigm for active prosthesis control. It encompasses a modelling formulation that simulates the amputee's phantom limb musculoskeletal dynamics as controlled by high-density EMG-extracted neural activations to muscles. We demonstrate how this technique can be applied to a transhumeral amputee offline to decode musculoskeletal function in the phantom elbow and wrist offline. Moreover, we provide preliminary data showing how this technique can be operated online on intact-limbed individuals. The proposed paradigm represents an important step towards next-generation bionic limbs that can mimic human biological limb functionality and robustness.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114840064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-01DOI: 10.1109/BIOROB.2018.8487701
Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte
Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.
{"title":"A Method for Quantifying Interaction Forces in Wearable Robots*","authors":"Anna-Maria Georgarakis, R. Stämpfli, P. Wolf, R. Riener, Jaime E. Duarte","doi":"10.1109/BIOROB.2018.8487701","DOIUrl":"https://doi.org/10.1109/BIOROB.2018.8487701","url":null,"abstract":"Immobility due to movement impairments causes many secondary conditions that are a threat to a person's health and quality of life. Wearable robotic mobility aids such as exoskeletons and exosuits are a promising technique to tackle immobility. These devices are attached to the human with cuffs. However, the physical interaction at the human-robot interface is not yet well understood. Misplacement and compression of soft tissue diminish the efficiency of the robot and the comfort for the human. We developed a measurement method that allows us to simultaneously measure cuff interaction forces in normal and tangential direction. The measurement setup was validated in a friction test bench. The test-retest reliability was evaluated in an isolated attachment cuff mounted on a human forearm. Force measurements were repeatable, with error ranges up to 28.7% or 7.8 N in normal, 28.7% or 2.3 N in tangential direction. Our method is the first approach that simultaneously measures normal and tangential forces at the physical interface of wearable robots. The test-retest reliability is within the range of methods that assess only normal forces.","PeriodicalId":382522,"journal":{"name":"2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115116440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}