首页 > 最新文献

Mendel最新文献

英文 中文
Identifying Optimal Baseline Variant of Unsupervised Term Weighting in Question Classification Based on Bloom Taxonomy 基于Bloom分类法的问题分类中无监督词权最优基线变量识别
Pub Date : 2022-06-30 DOI: 10.13164/mendel.2022.1.008
A. Sangodiah, Tham Jee San, Yong Tien Fui, Lim Ean Heng, R. Ayyasamy, Norazira A Jalil
Examination is one of the common ways to evaluate the students’ cognitive levels in higher education institutions. Exam questions are labeled manually by educators in accordance with Bloom’s taxonomy cognitive domain. To ease the burden of the educators, several past research works have proposed the automated question classification based on Bloom’s taxonomy using the machine learning technique. Feature selection, feature extraction and term weighting are common ways to improve the accuracy of question classification. Commonly used term weighting method in the past work is unsupervised namely TF and TF-IDF. There are several variants of TF and TFIDF and the most optimal variant has yet to be identified in the context of question classification based on BT. Therefore, this paper aims to study the TF, TF-IDF and normalized TF-IDF variants and identify the optimal variant that can enhance the exam question classification accuracy. To investigate the variants two different classifiers were used, which are Support Vector Machine (SVM) and Naïve Bayes. The average accuracies achieved by TF-IDF and normalized TF-IDF variants using SVM classifier were 64.3% and 72.4% respectively, while using Naïve Bayes classifier the average accuracies for TF-IDF and normalized TF-IDF were 61.9% and 63.0% respectively. Generally, the normalized TF-IDF variants outperformed TF and TF-IDF variants in accuracy and F1-measure respectively. Further statistical analysis using t-test and Wilcoxon Signed also shows that the differences in accuracy between normalized TF-IDF and TF, TF-IDF are significant. The findings from this study show that the Normalized TF-IDF3 variant recorded the highest accuracy of 74.0% among normalized TF-IDF variants. Also, the differences in accuracy between Normalized TF-IDF3 and other normalized variants are generally significant, thus the optimal variant is Normalized TF-IDF3. Therefore, the normalized TF-IDF3 variant is important for benchmarking purposes, which can be used to compare with other term weighting techniques in future work.
考试是高等院校评估学生认知水平的常用手段之一。考试题目由教育工作者根据布鲁姆的分类认知领域手工标记。为了减轻教育工作者的负担,过去的一些研究工作提出了基于Bloom分类法的机器学习技术的自动问题分类。特征选择、特征提取和词项加权是提高问题分类准确率的常用方法。以往工作中常用的术语加权方法是无监督的,即TF和TF- idf。TF和TFIDF有多种变体,在基于BT的问题分类中尚未找到最优变体,因此,本文旨在研究TF、TF- idf和规范化TF- idf变体,并找出能够提高考试问题分类准确率的最优变体。为了研究变量,使用了两种不同的分类器,即支持向量机(SVM)和Naïve贝叶斯。使用SVM分类器对TF-IDF和归一化TF-IDF变量的平均准确率分别为64.3%和72.4%,而使用Naïve贝叶斯分类器对TF-IDF和归一化TF-IDF的平均准确率分别为61.9%和63.0%。一般来说,归一化TF- idf变体在精度和f1测量方面分别优于TF和TF- idf变体。进一步使用t检验和Wilcoxon sign进行统计分析也表明,归一化TF- idf与TF、TF- idf的准确率差异显著。本研究结果表明,归一化TF-IDF3变异在归一化TF-IDF变异中准确率最高,为74.0%。此外,归一化TF-IDF3与其他归一化变体之间的精度差异通常是显著的,因此最优变体是归一化TF-IDF3。因此,标准化的TF-IDF3变体对于基准测试非常重要,它可以用于在未来的工作中与其他术语加权技术进行比较。
{"title":"Identifying Optimal Baseline Variant of Unsupervised Term Weighting in Question Classification Based on Bloom Taxonomy","authors":"A. Sangodiah, Tham Jee San, Yong Tien Fui, Lim Ean Heng, R. Ayyasamy, Norazira A Jalil","doi":"10.13164/mendel.2022.1.008","DOIUrl":"https://doi.org/10.13164/mendel.2022.1.008","url":null,"abstract":"Examination is one of the common ways to evaluate the students’ cognitive levels in higher education institutions. Exam questions are labeled manually by educators in accordance with Bloom’s taxonomy cognitive domain. To ease the burden of the educators, several past research works have proposed the automated question classification based on Bloom’s taxonomy using the machine learning technique. Feature selection, feature extraction and term weighting are common ways to improve the accuracy of question classification. Commonly used term weighting method in the past work is unsupervised namely TF and TF-IDF. There are several variants of TF and TFIDF and the most optimal variant has yet to be identified in the context of question classification based on BT. Therefore, this paper aims to study the TF, TF-IDF and normalized TF-IDF variants and identify the optimal variant that can enhance the exam question classification accuracy. To investigate the variants two different classifiers were used, which are Support Vector Machine (SVM) and Naïve Bayes. The average accuracies achieved by TF-IDF and normalized TF-IDF variants using SVM classifier were 64.3% and 72.4% respectively, while using Naïve Bayes classifier the average accuracies for TF-IDF and normalized TF-IDF were 61.9% and 63.0% respectively. Generally, the normalized TF-IDF variants outperformed TF and TF-IDF variants in accuracy and F1-measure respectively. Further statistical analysis using t-test and Wilcoxon Signed also shows that the differences in accuracy between normalized TF-IDF and TF, TF-IDF are significant. The findings from this study show that the Normalized TF-IDF3 variant recorded the highest accuracy of 74.0% among normalized TF-IDF variants. Also, the differences in accuracy between Normalized TF-IDF3 and other normalized variants are generally significant, thus the optimal variant is Normalized TF-IDF3. Therefore, the normalized TF-IDF3 variant is important for benchmarking purposes, which can be used to compare with other term weighting techniques in future work.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80105127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Color-Aware Two-Branch DCNN for Efficient Plant Disease Classification 基于颜色感知的双分支DCNN植物病害分类
Pub Date : 2022-06-30 DOI: 10.13164/mendel.2022.1.055
Joao Paulo Schwarz Schuler, S. Romaní, M. Abdel-Nasser, Hatem A. Rashwan, D. Puig
Deep convolutional neural networks (DCNNs) have been successfully applied to plant disease detection. Unlike most existing studies, we propose feeding a DCNN CIE Lab instead of RGB color coordinates. We modified an Inception V3 architecture to include one branch specific for achromatic data (L channel) and another branch specific for chromatic data (AB channels). This modification takes advantage of the decoupling of chromatic and achromatic information. Besides, splitting branches reduces the number of trainable parameters and computation load by up to 50% of the original figures using modified layers. We achieved a state-of-the-art classification accuracy of 99.48% on the Plant Village dataset and 76.91% on the Cropped-PlantDoc dataset.
深度卷积神经网络(Deep convolutional neural networks, DCNNs)已成功应用于植物病害检测。与大多数现有的研究不同,我们建议提供DCNN CIE Lab而不是RGB颜色坐标。我们修改了Inception V3架构,以包含一个特定于消色差数据的分支(L通道)和另一个特定于色差数据的分支(AB通道)。这种改进利用了彩色信息和消色差信息的解耦。此外,分支分割可以将可训练参数的数量和计算量减少到修改图层的原始图形的50%。我们在Plant Village数据集上实现了99.48%的最先进分类准确率,在croped - plantdoc数据集上达到76.91%。
{"title":"Color-Aware Two-Branch DCNN for Efficient Plant Disease Classification","authors":"Joao Paulo Schwarz Schuler, S. Romaní, M. Abdel-Nasser, Hatem A. Rashwan, D. Puig","doi":"10.13164/mendel.2022.1.055","DOIUrl":"https://doi.org/10.13164/mendel.2022.1.055","url":null,"abstract":"Deep convolutional neural networks (DCNNs) have been successfully applied to plant disease detection. Unlike most existing studies, we propose feeding a DCNN CIE Lab instead of RGB color coordinates. We modified an Inception V3 architecture to include one branch specific for achromatic data (L channel) and another branch specific for chromatic data (AB channels). This modification takes advantage of the decoupling of chromatic and achromatic information. Besides, splitting branches reduces the number of trainable parameters and computation load by up to 50% of the original figures using modified layers. We achieved a state-of-the-art classification accuracy of 99.48% on the Plant Village dataset and 76.91% on the Cropped-PlantDoc dataset.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80302311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Conversion of Volatile Time Series into a Fuzzy Time Series by the Example of the Dow Jones Index Dynamics 波动时间序列向模糊时间序列的转换——以道琼斯指数动态为例
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_88
Parvin Alizada
{"title":"Conversion of Volatile Time Series into a Fuzzy Time Series by the Example of the Dow Jones Index Dynamics","authors":"Parvin Alizada","doi":"10.1007/978-3-030-92127-9_88","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_88","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74074863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imperfect Knowledge Base Self-organization in Robotic Intelligent Cognitive Control: Quantum Supremacy 机器人智能认知控制中的不完全知识库自组织:量子霸权
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_29
S. Ulyanov, A. Shevchenko, A. A. Shevchenko, A. Reshetnikov
{"title":"Imperfect Knowledge Base Self-organization in Robotic Intelligent Cognitive Control: Quantum Supremacy","authors":"S. Ulyanov, A. Shevchenko, A. A. Shevchenko, A. Reshetnikov","doi":"10.1007/978-3-030-92127-9_29","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_29","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74369919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ranking Integration Factors Using Fuzzy TOPSIS Method 利用模糊TOPSIS法对综合因素进行排序
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_36
Tural Suleymanli
{"title":"Ranking Integration Factors Using Fuzzy TOPSIS Method","authors":"Tural Suleymanli","doi":"10.1007/978-3-030-92127-9_36","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_36","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78405018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Portfolio Selection Model Using Z-Numbers Theory 基于z -数理论的投资组合选择模型
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_43
Leyla Hasanova
{"title":"Portfolio Selection Model Using Z-Numbers Theory","authors":"Leyla Hasanova","doi":"10.1007/978-3-030-92127-9_43","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_43","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81282848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality Metrics of LSB Image Steganography Technique for Color Space HSI 彩色空间HSI下LSB图像隐写技术的质量度量
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_13
Yucel Inan
{"title":"Quality Metrics of LSB Image Steganography Technique for Color Space HSI","authors":"Yucel Inan","doi":"10.1007/978-3-030-92127-9_13","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_13","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"45 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90177502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Minimizing Handover Process and Wireless Propagation Lose by Using Multilayer Perception Neural Network 利用多层感知神经网络最小化切换过程和无线传播损失
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_21
J. Fathi
{"title":"Minimizing Handover Process and Wireless Propagation Lose by Using Multilayer Perception Neural Network","authors":"J. Fathi","doi":"10.1007/978-3-030-92127-9_21","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_21","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"114 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80705591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring of the Problematic Industry 4.0 and Platform-Based Economic Development 工业4.0与经济平台化发展探析
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_56
N. Yusupbekov, Shuhrat Gulyamov, N. Usmanova, Jamshid Khoshimov
{"title":"Exploring of the Problematic Industry 4.0 and Platform-Based Economic Development","authors":"N. Yusupbekov, Shuhrat Gulyamov, N. Usmanova, Jamshid Khoshimov","doi":"10.1007/978-3-030-92127-9_56","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_56","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82029165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simulation of Electrodynamic Processes in the Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information 圆柱-矩形微波波导系统传输信息的电动力学过程仿真
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-92127-9_35
I. Islamov, M. Hasanov, M. H. Abbasov
{"title":"Simulation of Electrodynamic Processes in the Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information","authors":"I. Islamov, M. Hasanov, M. H. Abbasov","doi":"10.1007/978-3-030-92127-9_35","DOIUrl":"https://doi.org/10.1007/978-3-030-92127-9_35","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"142 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74947420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Mendel
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1