{"title":"Improving clustering efficiency in machine learning for agricultural data to enhance yield productivity","authors":"P. Sathya, P. Gnanasekaran","doi":"10.1063/5.0155248","DOIUrl":"https://doi.org/10.1063/5.0155248","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"299 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72929007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of daily rainfall using dynamic Chow-Lin method","authors":"Prameela S. Bhanu, Archana Nair","doi":"10.1063/5.0154032","DOIUrl":"https://doi.org/10.1063/5.0154032","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85771577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new modification in quartic B-spline differential quadrature for telegraph equation","authors":"B. K. Singh, M. Gupta, G. Arora, J. P. Shukla","doi":"10.1063/5.0154160","DOIUrl":"https://doi.org/10.1063/5.0154160","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75234329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural equation modelling of integrated healthcare delivery system KPIs on operational performance and physician outcomes","authors":"V. Rema, K. Sikdar","doi":"10.1063/5.0153991","DOIUrl":"https://doi.org/10.1063/5.0153991","url":null,"abstract":"","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80647096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.009
Nidal Al Said, Dmitry Gura, Dmitry Karlov
The development of computer and information technologies contributed to technological advancement in artificial intelligence (AI) by introducing "smart" apps in modern smartphones and gadgets. The need to apply AI in smart apps is due to the excessive demand of users in solving their day-to-day tasks. Their effectiveness was assessed by analyzing the average statistics based on the nature of the information requested in seven blocks of questions. The study results showed that depending on the accuracy of the query formulated, the data processing to derive the results from smart apps can be very different. The analysis was based on four indicators: accuracy, conformity, non-specificity, and no-response. Another urgent issue is studying the operation of Siri and Google Assistant smart apps to assess the reliability compliance of data from requests and application development perspectives. The study objectives included: analyzing and studying AI and its different forms; collecting data on the everyday use of apps in modern smartphones and gadgets with voice support functions; investigating device compatibility with smart apps to analyze and evaluate usage efficiency; studying the dependency of smart apps usage in everyday life.
{"title":"Efficiency of Smart AI-Based Voice Apps and Virtual Services Operating With Chatbots","authors":"Nidal Al Said, Dmitry Gura, Dmitry Karlov","doi":"10.13164/mendel.2022.2.009","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.009","url":null,"abstract":"The development of computer and information technologies contributed to technological advancement in artificial intelligence (AI) by introducing \"smart\" apps in modern smartphones and gadgets. The need to apply AI in smart apps is due to the excessive demand of users in solving their day-to-day tasks. Their effectiveness was assessed by analyzing the average statistics based on the nature of the information requested in seven blocks of questions. The study results showed that depending on the accuracy of the query formulated, the data processing to derive the results from smart apps can be very different. The analysis was based on four indicators: accuracy, conformity, non-specificity, and no-response. Another urgent issue is studying the operation of Siri and Google Assistant smart apps to assess the reliability compliance of data from requests and application development perspectives. The study objectives included: analyzing and studying AI and its different forms; collecting data on the everyday use of apps in modern smartphones and gadgets with voice support functions; investigating device compatibility with smart apps to analyze and evaluate usage efficiency; studying the dependency of smart apps usage in everyday life.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81742220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.001
N. Sumarti, Ida B.P. Brahmandita, M. Aqsha
Compared to owning a private jet, Fractional Aircraft Ownership (FAO) concept is a cheaper alternative for very mobile business persons who want to travel in comfort. The aircraft is owned by a number of customers (referred to as “owners”) and the flight hours of its operation are shared based on each owner’s portion. In this research, we do the simulation of an FAO company with very large demands with 27 cities of destination, which are commonly visited by business people in Indonesia. We derive flight demands stochastically from the owners and create optimal flying schedules based on the demands. Using the calculation of fixed and variable costs, we can determine the optimal flight pairings that minimized the operational cost. Eventually, we can determine the number of aircraft needed to be owned by FAO so the business will profit.
{"title":"A Simulation of Optimal Model on Fractional Aircraft Ownership (FAO) Management","authors":"N. Sumarti, Ida B.P. Brahmandita, M. Aqsha","doi":"10.13164/mendel.2022.2.001","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.001","url":null,"abstract":"Compared to owning a private jet, Fractional Aircraft Ownership (FAO) concept is a cheaper alternative for very mobile business persons who want to travel in comfort. The aircraft is owned by a number of customers (referred to as “owners”) and the flight hours of its operation are shared based on each owner’s portion. In this research, we do the simulation of an FAO company with very large demands with 27 cities of destination, which are commonly visited by business people in Indonesia. We derive flight demands stochastically from the owners and create optimal flying schedules based on the demands. Using the calculation of fixed and variable costs, we can determine the optimal flight pairings that minimized the operational cost. Eventually, we can determine the number of aircraft needed to be owned by FAO so the business will profit.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"78 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89522293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.067
Asmaa Jameel Al Nawaiseh, Audi Albtoush, R AL-msie'Deen, Sabah Jamil Al Nawaiseh
Any organization that intends to use component-based software development, like outsourcing software, must first evaluate existing components against system requirements to find the best fit among many alternatives. As a result, there should be a mechanism to help with decision-making. Our proposed methodology tries to select the best alternative among available components, using the best decision-making approach. As an integrated method for order preference, the methodology in this paper uses two well-known criterion decision-making procedures, namely Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW). By analyzing and selecting the optimal solution among a variety of Out Sourcing (OS) modules, the new model design makes the decision-making process easier. We evaluated two software attributes and predicted which was more effective. In this case, the advantage of utilizing AHP is that it allows the developer to evaluate the structure of the OS selection problem and calculate weights for the chosen criteria. After that, the SAW technique is used to calculate the alternatives ratings for OS components. The integration strategy used in our model and the resulting preference indication, which is produced as an explicit numeric value.
{"title":"Evaluate Database Management System Quality By Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW) Methodolog","authors":"Asmaa Jameel Al Nawaiseh, Audi Albtoush, R AL-msie'Deen, Sabah Jamil Al Nawaiseh","doi":"10.13164/mendel.2022.2.067","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.067","url":null,"abstract":"Any organization that intends to use component-based software development, like outsourcing software, must first evaluate existing components against system requirements to find the best fit among many alternatives. As a result, there should be a mechanism to help with decision-making. Our proposed methodology tries to select the best alternative among available components, using the best decision-making approach. As an integrated method for order preference, the methodology in this paper uses two well-known criterion decision-making procedures, namely Analytic Hierarchy Process (AHP) and Simple Additive Weighting (SAW). By analyzing and selecting the optimal solution among a variety of Out Sourcing (OS) modules, the new model design makes the decision-making process easier. We evaluated two software attributes and predicted which was more effective. In this case, the advantage of utilizing AHP is that it allows the developer to evaluate the structure of the OS selection problem and calculate weights for the chosen criteria. After that, the SAW technique is used to calculate the alternatives ratings for OS components. The integration strategy used in our model and the resulting preference indication, which is produced as an explicit numeric value.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"220 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76603892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.025
Mohammed Osman Gani, R. Ayyasamy, A. Sangodiah, Yong Tien Fui
Bloom’s Taxonomy (BT) is widely used in educational institutions to produce high-quality exam papers to evaluate students’ knowledge at different cognitive levels. However, manual question labeling takes a long time, and not all evaluators are familiar with BT. The researchers worked to automate the exam question classification process based on BT as a solution. Enhancement in term weighting is one of the ways to increase classification accuracy while working with text data. However, all the past work on the term weighting in exam question classification focused on unsupervised term weighting (USTW) schemes. The supervised term weighting (STW) schemes showed effectiveness in text classification but were not addressed in past studies of exam question classification. As a result, this study focused on the effectiveness of STW in classifying exam questions using BT. Hence, this research performed a comparative analysis between the USTW schemes and STW for exam question classification. The STW schemes used in this study are TF-ICF, TF-IDF-ICF, and TF-IDF-ICSDF, whereas the USTW schemes used for comparison are TF-IDF, ETF-IDF, and TFPOS-IDF. This study used Support Vector Machines (SVM), Na¨ıve Bayes (NB), and Multilayer Perceptron (MLP) to train the model. Accuracy and F1 score were used in this study to evaluate the classification result. The experiment result showed that overall, the STW scheme TF-ICF outperformed all the other schemes, followed by the USTW scheme ETF-IDF. Both the ETF-IDF and TFPOS-IDF outperformed standard TFIDF. The outcome of this study indicates the future research direction where the combination of STW and USTW schemes may increase the Accuracy of BT-based exam question classification.
布鲁姆分类法(Bloom ' s Taxonomy, BT)被广泛应用于教育机构,用于制作高质量的试卷,以评估学生在不同认知水平上的知识。然而,人工题型标注耗时长,而且并非所有评价者都熟悉BT,研究人员致力于基于BT的考试题型自动分类过程作为解决方案。增强词权是在处理文本数据时提高分类准确性的方法之一。然而,以往关于题型分类中词权的研究主要集中在无监督词权(USTW)方法上。监督项加权(STW)方法在文本分类中表现出一定的有效性,但在以往的考试问题分类研究中尚未得到解决。因此,本研究关注的是STW在利用BT对试题进行分类时的有效性。因此,本研究对USTW方案和STW在试题分类方面进行了对比分析。本研究中使用的STW方案为TF-ICF、TF-IDF- icf和TF-IDF- icsdf,而用于比较的USTW方案为TF-IDF、TF-IDF和TFPOS-IDF。本研究使用支持向量机(SVM)、纳伊ıve贝叶斯(NB)和多层感知器(MLP)来训练模型。本研究采用准确率和F1评分来评价分类结果。实验结果表明,总体而言,STW方案TF-ICF性能优于其他方案,其次是USTW方案ETF-IDF。ETF-IDF和TFPOS-IDF均优于标准TFIDF。本研究的结果表明了未来的研究方向,即STW和USTW方案的结合可能会提高基于bt的考试问题分类的准确性。
{"title":"USTW Vs. STW: A Comparative Analysis for Exam Question Classification based on Bloom’s Taxonomy","authors":"Mohammed Osman Gani, R. Ayyasamy, A. Sangodiah, Yong Tien Fui","doi":"10.13164/mendel.2022.2.025","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.025","url":null,"abstract":"Bloom’s Taxonomy (BT) is widely used in educational institutions to produce high-quality exam papers to evaluate students’ knowledge at different cognitive levels. However, manual question labeling takes a long time, and not all evaluators are familiar with BT. The researchers worked to automate the exam question classification process based on BT as a solution. Enhancement in term weighting is one of the ways to increase classification accuracy while working with text data. However, all the past work on the term weighting in exam question classification focused on unsupervised term weighting (USTW) schemes. The supervised term weighting (STW) schemes showed effectiveness in text classification but were not addressed in past studies of exam question classification. As a result, this study focused on the effectiveness of STW in classifying exam questions using BT. Hence, this research performed a comparative analysis between the USTW schemes and STW for exam question classification. The STW schemes used in this study are TF-ICF, TF-IDF-ICF, and TF-IDF-ICSDF, whereas the USTW schemes used for comparison are TF-IDF, ETF-IDF, and TFPOS-IDF. This study used Support Vector Machines (SVM), Na¨ıve Bayes (NB), and Multilayer Perceptron (MLP) to train the model. Accuracy and F1 score were used in this study to evaluate the classification result. The experiment result showed that overall, the STW scheme TF-ICF outperformed all the other schemes, followed by the USTW scheme ETF-IDF. Both the ETF-IDF and TFPOS-IDF outperformed standard TFIDF. The outcome of this study indicates the future research direction where the combination of STW and USTW schemes may increase the Accuracy of BT-based exam question classification.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84016442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.083
D. Martišek
The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes contain a lot of information, however, most of this is unsubstantial for human vision. Therefore, it is necessary to use mathematical algorithms for the visualization of such images. Present software tools such as OpenGL or DirectX run quickly in a graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.
{"title":"Mathematical Methods for 3D Reconstruction of Cell Structures","authors":"D. Martišek","doi":"10.13164/mendel.2022.2.083","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.083","url":null,"abstract":"The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes contain a lot of information, however, most of this is unsubstantial for human vision. Therefore, it is necessary to use mathematical algorithms for the visualization of such images. Present software tools such as OpenGL or DirectX run quickly in a graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87897394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-20DOI: 10.13164/mendel.2022.2.076
Werry Febrianti, K. A. Sidarto, N. Sumarti
Black-Scholes (BS) equations, which are in the form of stochastic partial differential equations, are fundamental equations in mathematical finance, especially in option pricing. Even though there exists an analytical solution to the standard form, the equations are not straightforward to be solved numerically. The effective and efficient numerical method will be useful to solve advanced and non-standard forms of BS equations in the future. In this paper, we propose a method to solve BS equations using an approach of optimization problems, where a metaheuristic optimization algorithm is utilized to find the best-approximated solutions of the equations. Here we use the Adaptive Differential Evolution with Learning Parameter (ADELP) algorithm. The BS equations being solved are meant to find values of European option pricing that is equipped with Barrier option pricing. The result of our approximation method fits well to the analytical approximation solutions.
{"title":"Approximate Solution for Barrier Option Pricing Using Adaptive Differential Evolution With Learning Parameter","authors":"Werry Febrianti, K. A. Sidarto, N. Sumarti","doi":"10.13164/mendel.2022.2.076","DOIUrl":"https://doi.org/10.13164/mendel.2022.2.076","url":null,"abstract":"Black-Scholes (BS) equations, which are in the form of stochastic partial differential equations, are fundamental equations in mathematical finance, especially in option pricing. Even though there exists an analytical solution to the standard form, the equations are not straightforward to be solved numerically. The effective and efficient numerical method will be useful to solve advanced and non-standard forms of BS equations in the future. In this paper, we propose a method to solve BS equations using an approach of optimization problems, where a metaheuristic optimization algorithm is utilized to find the best-approximated solutions of the equations. Here we use the Adaptive Differential Evolution with Learning Parameter (ADELP) algorithm. The BS equations being solved are meant to find values of European option pricing that is equipped with Barrier option pricing. The result of our approximation method fits well to the analytical approximation solutions.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"114 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75041688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}