Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.
{"title":"Improving the Autoregressive Modeling Method in Random Noise Suppression of GPR Data Using Undecimated Discrete Wavelet Transform","authors":"B. Oskooi, Amin Ebrahimi Bardar, Ali Goodarzi","doi":"10.4236/JSIP.2018.91002","DOIUrl":"https://doi.org/10.4236/JSIP.2018.91002","url":null,"abstract":"Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"1 1","pages":"24-35"},"PeriodicalIF":0.0,"publicationDate":"2018-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82804105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01DOI: 10.1007/978-3-319-07776-5_14
Chang-Ming Kuo, Chi-Kao Chang, Nai-Chung Yang, C. Kuo, Yu-Ming Chen
{"title":"Bayesian-Based Probabilistic Architecture for Image Categorization Using Macro- and Micro-Sense Visual Vocabulary","authors":"Chang-Ming Kuo, Chi-Kao Chang, Nai-Chung Yang, C. Kuo, Yu-Ming Chen","doi":"10.1007/978-3-319-07776-5_14","DOIUrl":"https://doi.org/10.1007/978-3-319-07776-5_14","url":null,"abstract":"","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"33 1","pages":"1628-1638"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83639575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper tackles the problem of reading singularities of the geomagnetic field in noisy underwater (UW) environments. In particular, we propose a novel metrological approach to measuring low-amplitude geomagnetic signals in hard noisy magnetic environments. This research action was launched to develop a detection system for enforcing the peripheral security of military bases (harbors/coasts and landbases) and for asymmetric warfare. The concept underlying this theory is the spatial stability in the temporal variations of the geomagnetic field in the observation area. The paper presents the development and deployment of a self-informed measurement system, in which the signal acquired from each sensor—observation node—is compared with the signal acquired by the adjacent ones. The effectiveness of this procedure relates to the inter-node (sensor-to-sensor) distance, L; this quantity should, on one hand, correlate the noise and, on the other hand, decorrelate the target signal. The paper presents the results obtained, that demonstrate the ability of self-informed systems to read weak magnetic signals even in the presence of very high noise in low-density ionic solutions (i.e. sea water).
{"title":"Informative Signal Analysis: Metrology of the Underwater Geomagnetic Singularities in Low-Density Ionic Solution (Sea Water)","authors":"O. Faggioni, M. Soldani, G. Cozzani, R. Zunino","doi":"10.4236/JSIP.2018.91001","DOIUrl":"https://doi.org/10.4236/JSIP.2018.91001","url":null,"abstract":"The paper tackles the problem of reading singularities of the geomagnetic field in noisy underwater (UW) environments. In particular, we propose a novel metrological approach to measuring low-amplitude geomagnetic signals in hard noisy magnetic environments. This research action was launched to develop a detection system for enforcing the peripheral security of military bases (harbors/coasts and landbases) and for asymmetric warfare. The concept underlying this theory is the spatial stability in the temporal variations of the geomagnetic field in the observation area. The paper presents the development and deployment of a self-informed measurement system, in which the signal acquired from each sensor—observation node—is compared with the signal acquired by the adjacent ones. The effectiveness of this procedure relates to the inter-node (sensor-to-sensor) distance, L; this quantity should, on one hand, correlate the noise and, on the other hand, decorrelate the target signal. The paper presents the results obtained, that demonstrate the ability of self-informed systems to read weak magnetic signals even in the presence of very high noise in low-density ionic solutions (i.e. sea water).","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"11 1","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86585153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hassan Al-Wahshat, M. Al-Maitah, Takialddin Al-smadi
The constant growth of the number of Internet users places new demands on the bandwidth of modern communication. The World Wide Web has led to the emergence of various types of traffic, Graphics information, voice data, as well as various video applications demanding their special requirements for such networks. To meet all the requests, one increase of the network is not enough. As the number of Internet users and the various networks annex offices in-creases with each passing day, network needs a means of control that would ensure the support of both existing and new applications and services. There is still a need to address a number of issues before it announces the VoIP as the ultimate replacement of the traditional telephone network. This work provides an overview of the major benefits of VoIP network, as well as the presentation of a new way around the problem of ensuring the high quality of service for VoIP protocol on the basis of neural network model.
{"title":"Voice Quality for Internet Protocol Based on Neural Network Model","authors":"Hassan Al-Wahshat, M. Al-Maitah, Takialddin Al-smadi","doi":"10.4236/JSIP.2017.84013","DOIUrl":"https://doi.org/10.4236/JSIP.2017.84013","url":null,"abstract":"The constant growth of the number of Internet users places new demands on the bandwidth of modern communication. The World Wide Web has led to the emergence of various types of traffic, Graphics information, voice data, as well as various video applications demanding their special requirements for such networks. To meet all the requests, one increase of the network is not enough. As the number of Internet users and the various networks annex offices in-creases with each passing day, network needs a means of control that would ensure the support of both existing and new applications and services. There is still a need to address a number of issues before it announces the VoIP as the ultimate replacement of the traditional telephone network. This work provides an overview of the major benefits of VoIP network, as well as the presentation of a new way around the problem of ensuring the high quality of service for VoIP protocol on the basis of neural network model.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"32 1","pages":"195-202"},"PeriodicalIF":0.0,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74075318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gibran Benitez-Garcia, Tomoaki Nakamura, M. Kaneko
The recent boom of mass media communication (such as social media and mobiles) has boosted more applications of automatic facial expression recognition (FER). Thus, human facial expressions have to be encoded and recognized through digital devices. However, this process has to be done under recurrent problems of image illumination changes and partial occlusions. Therefore, in this paper, we propose a fully automated FER system based on Local Fourier Coefficients and Facial Fourier Descriptors. The combined power of appearance and geometric features is used for describing the specific facial regions of eyes-eyebrows, nose and mouth. All based on the attributes of the Fourier Transform and Support Vector Machines. Hence, our proposal overcomes FER problems such as illumination changes, partial occlusion, image rotation, redundancy and dimensionality reduction. Several tests were performed in order to demonstrate the efficiency of our proposal, which were evaluated using three standard databases: CK+, MUG and TFEID. In addition, evaluation results showed that the average recognition rate of each database reaches higher performance than most of the state-of-the-art techniques surveyed in this paper.
{"title":"Facial Expression Recognition Based on Local Fourier Coefficients and Facial Fourier Descriptors","authors":"Gibran Benitez-Garcia, Tomoaki Nakamura, M. Kaneko","doi":"10.4236/JSIP.2017.83009","DOIUrl":"https://doi.org/10.4236/JSIP.2017.83009","url":null,"abstract":"The recent boom of mass media communication (such as social media and mobiles) has boosted more applications of automatic facial expression recognition (FER). Thus, human facial expressions have to be encoded and recognized through digital devices. However, this process has to be done under recurrent problems of image illumination changes and partial occlusions. Therefore, in this paper, we propose a fully automated FER system based on Local Fourier Coefficients and Facial Fourier Descriptors. The combined power of appearance and geometric features is used for describing the specific facial regions of eyes-eyebrows, nose and mouth. All based on the attributes of the Fourier Transform and Support Vector Machines. Hence, our proposal overcomes FER problems such as illumination changes, partial occlusion, image rotation, redundancy and dimensionality reduction. Several tests were performed in order to demonstrate the efficiency of our proposal, which were evaluated using three standard databases: CK+, MUG and TFEID. In addition, evaluation results showed that the average recognition rate of each database reaches higher performance than most of the state-of-the-art techniques surveyed in this paper.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"49 1","pages":"132-151"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76490867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we present a new image compression method based on the direct and inverse F1-transform, a generalization of the concept of fuzzy transform. Under weak compression rates, this method improves the quality of the images with respect to the classical method based on the fuzzy transform.
{"title":"First Order Fuzzy Transform for Images Compression","authors":"F. D. Martino, S. Sessa, I. Perfilieva","doi":"10.4236/JSIP.2017.83012","DOIUrl":"https://doi.org/10.4236/JSIP.2017.83012","url":null,"abstract":"In this paper, we present a new image compression method based on the direct and inverse F1-transform, a generalization of the concept of fuzzy transform. Under weak compression rates, this method improves the quality of the images with respect to the classical method based on the fuzzy transform.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"12 1","pages":"178-194"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82841122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object even when it is occluded by another object is essential. Failing to track the occluded object may result in completely losing its location or another object to be mistakenly tracked. Both of which will result in disastrous consequences. There are various methods to handle occlusions. In a previous research which was done by the author, a novel noise filtration mechanism based on the corrector equation of the Kalman filter which can be used with greater accuracy to handle lengthy occlusions was made. In this presentation, a further analysis of the error of the algorithm will be presented. The algorithm when compared with existing algorithms under the same test conditions gives promising results.
{"title":"The Error Analysis Based on the Kalman Gain in a Position Predicting Algorithm of an Occluded Object","authors":"Manaram Gnanasekera, Hansi K. Abeynanda","doi":"10.4236/JSIP.2017.83011","DOIUrl":"https://doi.org/10.4236/JSIP.2017.83011","url":null,"abstract":"Detecting occluded objects is a crucial exercise in many spheres of application. For example in Strafing (attacking ground targets from low flying aircrafts) or vehicular tracking, continuous detection of the object even when it is occluded by another object is essential. Failing to track the occluded object may result in completely losing its location or another object to be mistakenly tracked. Both of which will result in disastrous consequences. There are various methods to handle occlusions. In a previous research which was done by the author, a novel noise filtration mechanism based on the corrector equation of the Kalman filter which can be used with greater accuracy to handle lengthy occlusions was made. In this presentation, a further analysis of the error of the algorithm will be presented. The algorithm when compared with existing algorithms under the same test conditions gives promising results.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"25 1","pages":"161-177"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79188922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Optimizing the estimates of received power signals is important as it can improve the process of transferring an active call from one base station in a cellular network to another base station without any interruptions to the call. The lack of effective techniques for estimation of shadow power in fading mobile wireless communication channels motivated the use of Kalman Filtering (KF) as an effective alternative. In our research, linear second-order state space Kalman Filtering was further investigated and tested for applicability. We first created simulation models for two KF-based estimators designed to estimate local mean (shadow) power in mobile communications corrupted by multipath noise. Simulations were used extensively in the initial stage of this research to validate the proposed method. The next challenge was to determine if the models would work with real data. Therefore, in [1] we presented a new technique to experimentally characterize the wireless small-scale fading channel taking into consideration real environmental conditions. The two-dimensional measurement technique enabled us to perform indoor experiments and collect real data. Measurements from these experiments were then used to validate simulation models for both estimators. Based on the indoor experiments, we presented new results in [2], where we concluded that the second-order KF-based estimator is more accurate in predicting local shadow power profiles than the first-order KF-based estimator, even in channels with imposed non-Gaussian measurement noise. In the present paper, we extend experiments to the outdoor environment to include higher speeds, larger distances, and distant large objects, such as tall buildings. Comparison was performed to see if the system is able to operate without a failure under a variety of conditions, which demonstrates model robustness and further investigates the effectiveness of this method in optimization of the received signals. Outdoor experimental results are provided. Findings demonstrate that the second-order Kalman filter outperforms the first-order Kalman filter.
{"title":"Fading Channels Parametric Data Simulation Supported by Real Data from Outdoor Experiments","authors":"Azra Kapetanovic, M. Zohdy, Redhwan Mawari","doi":"10.4236/JSIP.2017.83008","DOIUrl":"https://doi.org/10.4236/JSIP.2017.83008","url":null,"abstract":"Optimizing the estimates of received power signals is important as it can improve the process of transferring an active call from one base station in a cellular network to another base station without any interruptions to the call. The lack of effective techniques for estimation of shadow power in fading mobile wireless communication channels motivated the use of Kalman Filtering (KF) as an effective alternative. In our research, linear second-order state space Kalman Filtering was further investigated and tested for applicability. We first created simulation models for two KF-based estimators designed to estimate local mean (shadow) power in mobile communications corrupted by multipath noise. Simulations were used extensively in the initial stage of this research to validate the proposed method. The next challenge was to determine if the models would work with real data. Therefore, in [1] we presented a new technique to experimentally characterize the wireless small-scale fading channel taking into consideration real environmental conditions. The two-dimensional measurement technique enabled us to perform indoor experiments and collect real data. Measurements from these experiments were then used to validate simulation models for both estimators. Based on the indoor experiments, we presented new results in [2], where we concluded that the second-order KF-based estimator is more accurate in predicting local shadow power profiles than the first-order KF-based estimator, even in channels with imposed non-Gaussian measurement noise. In the present paper, we extend experiments to the outdoor environment to include higher speeds, larger distances, and distant large objects, such as tall buildings. Comparison was performed to see if the system is able to operate without a failure under a variety of conditions, which demonstrates model robustness and further investigates the effectiveness of this method in optimization of the received signals. Outdoor experimental results are provided. Findings demonstrate that the second-order Kalman filter outperforms the first-order Kalman filter.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"18 1","pages":"113-131"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85375033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the speed gap between storage system access and processor computing, end-to-end data processing has become a bottleneck to improve the total performance of computer systems over the Internet. Based on the analysis of data processing behavior, an adaptive cache organization scheme is proposed with fast address calculation. This scheme can make full use of the characteristics of stack space data access, adopt fast address calculation strategy, and reduce the hit time of stack access. Adaptively, the stack cache can be turned off from beginning to end, when a stack overflow occurs to avoid the effect of stack switching on processor performance. Also, through the instruction cache and the failure behavior for the data cache, a prefetching policy is developed, which is combined with the data capture of the failover queue state. Finally, the proposed method can maintain the order of instruction and data access, which facilitates the extraction of prefetching in the end-to-end data processing.
{"title":"Adaptive Cache Allocation with Prefetching Policy over End-to-End Data Processing","authors":"H. Qin, Li Zhu","doi":"10.4236/JSIP.2017.83010","DOIUrl":"https://doi.org/10.4236/JSIP.2017.83010","url":null,"abstract":"With the speed gap between storage system access and processor computing, \u0000end-to-end data processing has become a bottleneck to improve the total performance \u0000of computer systems over the Internet. Based on the analysis of data \u0000processing behavior, an adaptive cache organization scheme is proposed with \u0000fast address calculation. This scheme can make full use of the characteristics \u0000of stack space data access, adopt fast address calculation strategy, and reduce \u0000the hit time of stack access. Adaptively, the stack cache can be turned off from \u0000beginning to end, when a stack overflow occurs to avoid the effect of stack \u0000switching on processor performance. Also, through the instruction cache and \u0000the failure behavior for the data cache, a prefetching policy is developed, \u0000which is combined with the data capture of the failover queue state. Finally, \u0000the proposed method can maintain the order of instruction and data access, \u0000which facilitates the extraction of prefetching in the end-to-end data processing.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"55 1","pages":"152-160"},"PeriodicalIF":0.0,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82040652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gibran Benitez-Garcia, Tomoaki Nakamura, M. Kaneko
Facial expressions are the straight link for showing human emotions. Psychologists have established the universality of six prototypic basic facial expressions of emotions which they believe are consistent among cultures and races. However, some recent cross-cultural studies have questioned and to some degree refuted this cultural universality. Therefore, in order to contribute to the theory of cultural specificity of basic expressions, from a composite viewpoint of psychology and HCI (Human Computer Interaction), this paper presents a methodical analysis of Western-Caucasian and East-Asian prototypic expressions focused on four facial regions: forehead, eyes-eyebrows, mouth and nose. Our analysis is based on facial expression recognition and visual analysis of facial expression images of two datasets composed by four standard databases CK+, JAFFE, TFEID and JACFEE. A hybrid feature extraction method based on Fourier coefficients is proposed for the recognition analysis. In addition, we present a cross-cultural human study applied to 40 subjects as a baseline, as well as one comparison of facial expression recognition performance between the previous cross-cultural tests from the literature. With this work, it is possible to clarify the prior considerations for working with multicultural facial expression recognition and contribute to identifying the specific facial expression differences between Western-Caucasian and East-Asian basic expressions of emotions.
{"title":"Methodical Analysis of Western-Caucasian and East-Asian Basic Facial Expressions of Emotions Based on Specific Facial Regions","authors":"Gibran Benitez-Garcia, Tomoaki Nakamura, M. Kaneko","doi":"10.4236/JSIP.2017.82006","DOIUrl":"https://doi.org/10.4236/JSIP.2017.82006","url":null,"abstract":"Facial expressions are the straight link for showing human emotions. Psychologists have established the universality of six prototypic basic facial expressions of emotions which they believe are consistent among cultures and races. However, some recent cross-cultural studies have questioned and to some degree refuted this cultural universality. Therefore, in order to contribute to the theory of cultural specificity of basic expressions, from a composite viewpoint of psychology and HCI (Human Computer Interaction), this paper presents a methodical analysis of Western-Caucasian and East-Asian prototypic expressions focused on four facial regions: forehead, eyes-eyebrows, mouth and nose. Our analysis is based on facial expression recognition and visual analysis of facial expression images of two datasets composed by four standard databases CK+, JAFFE, TFEID and JACFEE. A hybrid feature extraction method based on Fourier coefficients is proposed for the recognition analysis. In addition, we present a cross-cultural human study applied to 40 subjects as a baseline, as well as one comparison of facial expression recognition performance between the previous cross-cultural tests from the literature. With this work, it is possible to clarify the prior considerations for working with multicultural facial expression recognition and contribute to identifying the specific facial expression differences between Western-Caucasian and East-Asian basic expressions of emotions.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"14 1","pages":"78-98"},"PeriodicalIF":0.0,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80664879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}