Petr Beneš, Tomáš Vrána, David Bricín, Antonín Kříž
The article deals with the possibility of increasing mechanical and utility properties by means of regenerative heat treatment. Experimental program is focused on the heat treatment of low-alloy heat-resistant steel EN ISO 14MoV6-3. This steel has been used since the 1970s for high-temperature exposed components in practically all coal-fired thermal power plants in the Czech Republic. Thus, steel EN ISO 14MoV6-3 is currently the best studied refractory material whose data, collected from experimental creep behaviour tests, exceeds the computational service time 2.105 hours. In order to remain competitive in the new energy mix, conventional steam power plants are forced to adapt to the requirements of semi-scheduled power generation. However, these plants were not originally designed for such operation and therefore have to adapt to new demands on the timing of the power provided, including requirements to reduce overall plant emissions and to increase the efficiency of power generation. These components are now subjected to substantially increased cyclic stresses due to power changes during half-cap operation. These stresses have a major impact on the material lifetime and therefore on the overall performance and lifetime of the plant.
本文讨论了利用蓄热式热处理提高机械性能和实用性能的可能性。实验方案主要针对低合金耐热材料steel EN ISO 14MoV6-3的热处理。自20世纪70年代以来,这种钢材一直用于捷克共和国几乎所有燃煤火力发电厂的高温暴露部件。因此,钢材EN ISO 14MoV6-3Â是目前研究得最好的耐火材料,其从实验蠕变行为测试中收集的数据超过了计算使用时间2.105小时。为了在新的能源结构中保持竞争力,传统的蒸汽发电厂被迫适应半计划发电的要求。然而,这些电厂最初并不是为这种运行而设计的,因此必须适应对供电时间的新要求,包括减少电厂整体排放和提高发电效率的要求。由于在半封盖操作期间功率的变化,这些部件现在承受了大幅增加的循环应力。这些应力对材料寿命有重大影响,因此对工厂的整体性能和寿命也有重大影响。
{"title":"Possibilities of Restoring the Plasticity of Operationally Degraded Steel EN ISO 14MoV6-3","authors":"Petr Beneš, Tomáš Vrána, David Bricín, Antonín Kříž","doi":"10.21062/mft.2023.081","DOIUrl":"https://doi.org/10.21062/mft.2023.081","url":null,"abstract":"The article deals with the possibility of increasing mechanical and utility properties by means of regenerative heat treatment. Experimental program is focused on the heat treatment of low-alloy heat-resistant steel EN ISO 14MoV6-3. This steel has been used since the 1970s for high-temperature exposed components in practically all coal-fired thermal power plants in the Czech Republic. Thus, steel EN ISO 14MoV6-3 is currently the best studied refractory material whose data, collected from experimental creep behaviour tests, exceeds the computational service time 2.105 hours. In order to remain competitive in the new energy mix, conventional steam power plants are forced to adapt to the requirements of semi-scheduled power generation. However, these plants were not originally designed for such operation and therefore have to adapt to new demands on the timing of the power provided, including requirements to reduce overall plant emissions and to increase the efficiency of power generation. These components are now subjected to substantially increased cyclic stresses due to power changes during half-cap operation. These stresses have a major impact on the material lifetime and therefore on the overall performance and lifetime of the plant.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"48 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The subject of research is the kinematic parameters of a biplanetary mechanism of the intermitted mixing machines. The article substantiates analytical expressions for determining the kinematic parameters of the drives of the working body of the intermitted mixing machines with planetary ones with double satellites and biplanetary mechanisms; the laws of change of displacements, velocities and accelerations of the points of the working body for drives with planetary one with double satellites and biplanetary mechanisms are determined; the regularities of the influence of the velocity parameters of the driving links on the kinematic characteristics of these mechanisms are established.
{"title":"Kinematic Parameters of the Biplanetary Mechanism (Intermittent Mixing Machines)","authors":"Erkin Nematov, Amon Berdiev, Peng Wang","doi":"10.21062/mft.2023.073","DOIUrl":"https://doi.org/10.21062/mft.2023.073","url":null,"abstract":"The subject of research is the kinematic parameters of a biplanetary mechanism of the intermitted mixing machines. The article substantiates analytical expressions for determining the kinematic parameters of the drives of the working body of the intermitted mixing machines with planetary ones with double satellites and biplanetary mechanisms; the laws of change of displacements, velocities and accelerations of the points of the working body for drives with planetary one with double satellites and biplanetary mechanisms are determined; the regularities of the influence of the velocity parameters of the driving links on the kinematic characteristics of these mechanisms are established.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianewei Wang, Haikuo Zhao, Fei Xie, Chenyang Li, Xiulian Li
In order to accumulate experience in the design and manufacturing of the toroidal field coils for the China Fusion Engineering Test Reactor, a model coil of mixed Nb3Sn-NbTi superconducting magnet with a maximum magnetic field variation rate of 1.5 T/s has been developed at the Institute of Plasma Physics, Chinese Academy of Sciences. The preload system, as one of the key components of the model coil, plays a crucial role in maintaining the overall integrity and stability of the model coil. First the magnetic field and electromagnetic forces of the model coil under extreme conditions are calculated based on Maxwell's equations. Then, the mechanical performance of the model coil at room and cryogenic temperatures is analyzed. To addressing the issue of excessive stress in the preload components of the model coil under preload, several optimization design schemes are proposed and iteratively analyzed. Finally, stress linearization is performed, and stress evaluation is conducted based on the analytical design. The assessment results indicate that certain optimization schemes enable the preload components to fully meet the operational requirements at both room and cryogenic temperatures. The outcomes presented in the paper will provide reference for the subsequent design and manufacturing of the central solenoid coil.
{"title":"The Mechanical Analyses and Structural Optimization of CSMC Preload System under Multi-load Cases","authors":"Xianewei Wang, Haikuo Zhao, Fei Xie, Chenyang Li, Xiulian Li","doi":"10.21062/mft.2023.075","DOIUrl":"https://doi.org/10.21062/mft.2023.075","url":null,"abstract":"In order to accumulate experience in the design and manufacturing of the toroidal field coils for the China Fusion Engineering Test Reactor, a model coil of mixed Nb3Sn-NbTi superconducting magnet with a maximum magnetic field variation rate of 1.5 T/s has been developed at the Institute of Plasma Physics, Chinese Academy of Sciences. The preload system, as one of the key components of the model coil, plays a crucial role in maintaining the overall integrity and stability of the model coil. First the mag\u0002netic field and electromagnetic forces of the model coil under extreme conditions are calculated based on Maxwell's equations. Then, the mechanical performance of the model coil at room and cryogenic temperatures is analyzed. To addressing the issue of excessive stress in the preload components of the model coil under preload, several optimization design schemes are proposed and iteratively analyzed. Finally, stress linearization is performed, and stress evaluation is conducted based on the analytical de\u0002sign. The assessment results indicate that certain optimization schemes enable the preload components to fully meet the operational requirements at both room and cryogenic temperatures. The outcomes pre\u0002sented in the paper will provide reference for the subsequent design and manufacturing of the central solenoid coil.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"356 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artur Meller, Marcin Suszyński, Stanisław Legutko, Marek Trączyński, Adrian Mróz, Vit Cernohlavek
Article presents a novel approach to addressing the challenge of forge-free filling of gas cylinder valve knobs in the context of the pneumatic shock absorber utilized within elevator systems. The shock absorber is a critical component responsible for ensuring accurate and efficient transportation of charge material to the electric inductor of automatic hot forging presses. Precise control of the shock absorber's operation is essential for maintaining proper system functionality and minimizing deficiencies. To investigate the system's response to changes in shock absorber operating parameters, the authors conducted a comprehensive simulation. The simulation results revealed that by identifying specific and optimal operational characteristics, the level of deficiencies can be significantly reduced. These findings offer valuable insights into system behavior, facilitating the optimization of shock absorber operation and overall improvement of the hot forging process. Implementation of the optimized shock absorber operation based on the simulation outcomes can enhance productivity, cost-efficiency, and quality in the hot forging industry.
{"title":"Optimizing Shock Absorber Operation for Improved Hot Forging Efficiency","authors":"Artur Meller, Marcin Suszyński, Stanisław Legutko, Marek Trączyński, Adrian Mróz, Vit Cernohlavek","doi":"10.21062/mft.2023.074","DOIUrl":"https://doi.org/10.21062/mft.2023.074","url":null,"abstract":"Article presents a novel approach to addressing the challenge of forge-free filling of gas cylinder valve knobs in the context of the pneumatic shock absorber utilized within elevator systems. The shock absorber is a critical component responsible for ensuring accurate and efficient transportation of charge material to the electric inductor of automatic hot forging presses. Precise control of the shock absorber's operation is essential for maintaining proper system functionality and minimizing deficiencies. To investigate the system's response to changes in shock absorber operating parameters, the authors conducted a comprehensive simulation. The simulation results revealed that by identifying specific and optimal operational characteristics, the level of deficiencies can be significantly reduced. These findings offer valuable insights into system behavior, facilitating the optimization of shock absorber operation and overall improvement of the hot forging process. Implementation of the optimized shock absorber operation based on the simulation outcomes can enhance productivity, cost-efficiency, and quality in the hot forging industry.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Mičietová, Miroslav Neslušan, Zuzana Florková, Mária Čilliková
This paper analyses surface after laser beam machining with respect of surface height irregularities, residual stress state as well as microstructure on the low alloyed steel S 235. Surface after laser beam machining is investigated due to its specific nature resulting into coating delamination. This coating delamination can be found especially in the regions in which component shape or/and curvature of the profile is altered. Especially the components corners suffer from the delamination due to exten-sive surface heating and presence of brittle oxides layer. The thickness of this oxides layer is hetero-geneous with respect of the component thickness as well as the component geometry. It was found the oxides layer is the thermally initiated process since in these regions the underlying matrix also exhibits the higher thickness of the heat affected zone and higher degree of the hardening expressed in term of HV0.1. Furthermore, also the compressive residual stresses exhibit higher amplitudes in the region remarkably affected by the thermal cycle.
{"title":"Analysis of the Coating Delamination after Laser Beam Cutting","authors":"Anna Mičietová, Miroslav Neslušan, Zuzana Florková, Mária Čilliková","doi":"10.21062/mft.2023.070","DOIUrl":"https://doi.org/10.21062/mft.2023.070","url":null,"abstract":"This paper analyses surface after laser beam machining with respect of surface height irregularities, residual stress state as well as microstructure on the low alloyed steel S 235. Surface after laser beam machining is investigated due to its specific nature resulting into coating delamination. This coating delamination can be found especially in the regions in which component shape or/and curvature of the profile is altered. Especially the components corners suffer from the delamination due to exten-sive surface heating and presence of brittle oxides layer. The thickness of this oxides layer is hetero-geneous with respect of the component thickness as well as the component geometry. It was found the oxides layer is the thermally initiated process since in these regions the underlying matrix also exhibits the higher thickness of the heat affected zone and higher degree of the hardening expressed in term of HV0.1. Furthermore, also the compressive residual stresses exhibit higher amplitudes in the region remarkably affected by the thermal cycle.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135396158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimír Bechný, Miroslav Matuš, Richard Joch, Mário Drbúl, Jozef Holubják, Andrej Czán, Michal Šajgalík, Jaromír Markovič
Casting with a disposable pattern is a method employed to produce intricate-shaped castings. This manufacturing technique falls into the near-net shape methods category, which ensures that the result-ing castings closely resemble the final components. Its primary application lies in industries where pre-cision and complex castings are of paramount importance. Typically, castings manufactured using this method utilize higher-cost materials. The focus of this study centres on the utilization of reverse engi-neering in the production, modification, and inspection of wax injection moulds during the casting pro-cess. Within the scope of this investigation, a non-contact method employing the Kreon arm with the Aqulion scanner was implemented. This method facilitated the generation of a digital scan, serving as the foundation for designing and validating the mould for subsequent practical application.
{"title":"Design of an Injection Mould Utilizing Experimental Measurements and Reverse Engineering","authors":"Vladimír Bechný, Miroslav Matuš, Richard Joch, Mário Drbúl, Jozef Holubják, Andrej Czán, Michal Šajgalík, Jaromír Markovič","doi":"10.21062/mft.2023.072","DOIUrl":"https://doi.org/10.21062/mft.2023.072","url":null,"abstract":"Casting with a disposable pattern is a method employed to produce intricate-shaped castings. This manufacturing technique falls into the near-net shape methods category, which ensures that the result-ing castings closely resemble the final components. Its primary application lies in industries where pre-cision and complex castings are of paramount importance. Typically, castings manufactured using this method utilize higher-cost materials. The focus of this study centres on the utilization of reverse engi-neering in the production, modification, and inspection of wax injection moulds during the casting pro-cess. Within the scope of this investigation, a non-contact method employing the Kreon arm with the Aqulion scanner was implemented. This method facilitated the generation of a digital scan, serving as the foundation for designing and validating the mould for subsequent practical application.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Wafiuddin Suhami, Norfariza Ab Wahab, H. Boejang, Khairum Hamzah, Hiroyuki Sasahara
In today's manufacturing industry, composites are widely used. This is primarily due to the highly variable material properties that can be obtained by combining various materials as reinforcements and matrices. However, modern environmental concerns have pushed researchers and engineers to seek materials from organic and renewable sources. The study will look into composite surface roughness during the cutting process, which will involve milling with a CNC router machine. A portable surface roughness tester will be used to obtain a surface roughness average (Ra) reading, and microscopes will be used to examine the composite surface roughness behaviour under a microscope. Based on the results of the experiment, 82 wt.% vinyl ester resin on coconut fibre composite provides the best material properties. With a constant feed rate of 500 mm/min applied to spindle speeds of 5,000, 20,000, and 30,000 rpm, the 5,000 rpm showed the best surface roughness average performance compared to the other two. Further research focusing on feed rates may be required to better deduce the material machining data.
{"title":"Characteristics of Coconut Fibre Combined with Vinyl Ester Composites Through Material Testing and Machining","authors":"Muhammad Wafiuddin Suhami, Norfariza Ab Wahab, H. Boejang, Khairum Hamzah, Hiroyuki Sasahara","doi":"10.21062/mft.2023.071","DOIUrl":"https://doi.org/10.21062/mft.2023.071","url":null,"abstract":"In today's manufacturing industry, composites are widely used. This is primarily due to the highly variable material properties that can be obtained by combining various materials as reinforcements and matrices. However, modern environmental concerns have pushed researchers and engineers to seek materials from organic and renewable sources. The study will look into composite surface roughness during the cutting process, which will involve milling with a CNC router machine. A portable surface roughness tester will be used to obtain a surface roughness average (Ra) reading, and microscopes will be used to examine the composite surface roughness behaviour under a microscope. Based on the results of the experiment, 82 wt.% vinyl ester resin on coconut fibre composite provides the best material properties. With a constant feed rate of 500 mm/min applied to spindle speeds of 5,000, 20,000, and 30,000 rpm, the 5,000 rpm showed the best surface roughness average performance compared to the other two. Further research focusing on feed rates may be required to better deduce the material machining data.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lenka Bartosova, Marcel Kohutiar, Michal Krbata, Jana Escherova, Maros Eckert, Milan Jus
The presented work deals with the study of the effect of increasing the doses of irradiation by accel-erated electrons on the sliding properties of polymer materials. Due to the influence of radiation, sur-face roughness changes occur on the surface of the experimental materials, which lead to changes in the properties of the coefficient of friction on the selected polymer materials. Three types of polymer materials PET, PTFE and PE2000C were used for the experimental research, which, due to their properties, are used for different types of sliding products. A steel ball of G40 material was used as a pressure material, which moved along a linear path on which the load was increased from 10 N to 100 N. Electron beam accelerators with the conversion of electrons to X-rays combine the advantages of a high ability to penetrate gamma photons sources and high performance of electron beam devices. The application possibilities of the device are wide due to the dual mode of operation (electron beam or X-ray beam) and a wide range of applicable doses and also dose rates.
{"title":"The Influence of Accelerated Electron Irradiation on the Change of Tribological Behavior of Polymeric Materials PET, PTFE & PE2000C","authors":"Lenka Bartosova, Marcel Kohutiar, Michal Krbata, Jana Escherova, Maros Eckert, Milan Jus","doi":"10.21062/mft.2023.068","DOIUrl":"https://doi.org/10.21062/mft.2023.068","url":null,"abstract":"The presented work deals with the study of the effect of increasing the doses of irradiation by accel-erated electrons on the sliding properties of polymer materials. Due to the influence of radiation, sur-face roughness changes occur on the surface of the experimental materials, which lead to changes in the properties of the coefficient of friction on the selected polymer materials. Three types of polymer materials PET, PTFE and PE2000C were used for the experimental research, which, due to their properties, are used for different types of sliding products. A steel ball of G40 material was used as a pressure material, which moved along a linear path on which the load was increased from 10 N to 100 N. Electron beam accelerators with the conversion of electrons to X-rays combine the advantages of a high ability to penetrate gamma photons sources and high performance of electron beam devices. The application possibilities of the device are wide due to the dual mode of operation (electron beam or X-ray beam) and a wide range of applicable doses and also dose rates.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakub Jopek, Marek Góral, Barbara Koscielniak, Kamil Ochal, Marcin Drajewicz, Magdalena Mokrzycka, Tadeusz Kubaszek, Kamil Dychton, Kamil Gancarczyk, Andrzej Gradzik, Pawel Kwasniewski, Wojciech Gluchowski
Jakub Jopek, Marek GĂłral, Barbara Koscielniak, Kamil Ochal, Marcin Drajewicz, Magdalena Mokrzycka, Tadeusz Kubaszek, Kamil Dychton, Kamil Gancarczyk, Andrzej Gradzik, Pawel Kwasniewski, Wojciech Gluchowski
Jakub Jopek, Marek G³ral, Barbara Koscielniak, Kamil Ochal, Marcin Drajewicz, Magdalena Mokrzycka, Tadeusz Kubaszek, Kamil Dychton, Kamil Gancarczyk, Andrzej Gradzik, Pawel Kwasniewski, Wojciech Gluchowski
{"title":"The Influence of Industrial-Scale Pack-Boroding Process Time on Thickness and Phase Composition of Selected Cold-Work Tool Steels","authors":"Jakub Jopek, Marek Góral, Barbara Koscielniak, Kamil Ochal, Marcin Drajewicz, Magdalena Mokrzycka, Tadeusz Kubaszek, Kamil Dychton, Kamil Gancarczyk, Andrzej Gradzik, Pawel Kwasniewski, Wojciech Gluchowski","doi":"10.21062/mft.2023.069","DOIUrl":"https://doi.org/10.21062/mft.2023.069","url":null,"abstract":"Jakub Jopek, Marek GĂłral, Barbara Koscielniak, Kamil Ochal, Marcin Drajewicz, Magdalena Mokrzycka, Tadeusz Kubaszek, Kamil Dychton, Kamil Gancarczyk, Andrzej Gradzik, Pawel Kwasniewski, Wojciech Gluchowski","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milan Uhríčik, Peter Palček, Mária Chalupová, Lenka Kuchariková, Lucia Pastierovičová, Denisa Medvecká, Lenka Markovičová, Róbert Balšianka, Alan Vaško
The article deals with the analysis of the structure and fracture surface of aluminum alloy samples. Alu-minum alloy AlMg9 was used as an experimental material. The material from which the samples were made was supplied as cast without heat treatment, and specifically the material was produced by the continuous casting method. The structure of the test material was examined using a Neophot 32 optical microscope, and the fracture surface of the test sample was examined using a scanning electron microscope (SEM). The fatigue life of the aluminum alloy was tested by three-point bending cyclic loading using the parameters - frequency f = 100 Hz, temperature T = 22 ± 5 ℃ and stress ratio R = 0.11. The analysis showed that cast aluminum alloys are very sensitive to casting defects, such as porosity or the content and distribution of intermetallic phases. If large pores or phases are present on or near the surface of the sample, this can be the dominant cause of fatigue crack initiation and reduction of the fatigue lifetime.
{"title":"Structural and Fractographic Analysis of Aluminum Alloy before and After Fatigue Loading","authors":"Milan Uhríčik, Peter Palček, Mária Chalupová, Lenka Kuchariková, Lucia Pastierovičová, Denisa Medvecká, Lenka Markovičová, Róbert Balšianka, Alan Vaško","doi":"10.21062/mft.2023.067","DOIUrl":"https://doi.org/10.21062/mft.2023.067","url":null,"abstract":"The article deals with the analysis of the structure and fracture surface of aluminum alloy samples. Alu-minum alloy AlMg9 was used as an experimental material. The material from which the samples were made was supplied as cast without heat treatment, and specifically the material was produced by the continuous casting method. The structure of the test material was examined using a Neophot 32 optical microscope, and the fracture surface of the test sample was examined using a scanning electron microscope (SEM). The fatigue life of the aluminum alloy was tested by three-point bending cyclic loading using the parameters - frequency f = 100 Hz, temperature T = 22 ± 5 ℃ and stress ratio R = 0.11. The analysis showed that cast aluminum alloys are very sensitive to casting defects, such as porosity or the content and distribution of intermetallic phases. If large pores or phases are present on or near the surface of the sample, this can be the dominant cause of fatigue crack initiation and reduction of the fatigue lifetime.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134912066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}