A. A. Abd-Eltwab, Gamal I. Helal, Mohamed N. El-Sheikh, E. K. Saied, Ahmed M. Atia
{"title":"An Investigation into Conventional Spinning Process Using Ball Shaped Rollers as Forming Tool","authors":"A. A. Abd-Eltwab, Gamal I. Helal, Mohamed N. El-Sheikh, E. K. Saied, Ahmed M. Atia","doi":"10.21062/mft.2023.084","DOIUrl":"https://doi.org/10.21062/mft.2023.084","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138593079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FEM Simulation of the Flange Turning in the Production of Aluminium Aerosol Cans","authors":"C. Felhő, I. Sztankovics, Z. Maros, K. Kun-Bodnár","doi":"10.21062/mft.2023.104","DOIUrl":"https://doi.org/10.21062/mft.2023.104","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study of High-density Polyethylene (HDPE) and Polypropylene (PP) Melt Rheology Using Single-screw Extruder at Different Extrusion Conditions","authors":"Fadi Alzarzouri, J. Skočilas","doi":"10.21062/mft.2023.103","DOIUrl":"https://doi.org/10.21062/mft.2023.103","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138616950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nataša Náprstková, Karel Šramhauser, Iryna Hren, Jan Novotný, Jan Sviantek
Machining is an important part of the manufacturing process in the engineering field. Turning is one of these areas. At present, almost exclusively exchangeable cutting inserts are used in production machining. The article describes the research in the field of their wear, where the electron microscopy was used to evaluate the results. Electron microscopy is a very important aid in research in many are-as not only of human activity and also is the important aid in the field of mechanical engineering and manufacturing technologies. The results thus obtained can make in a given area it clearer and better document the resulting situation. Within the experiments, selected cutting inserts were used and the given material was machined. The electron microscope Tescan Vega 3, which is available at the workplace where the experiment was conducted, was used to evaluate the resulting wear. In the frame of experiments was also performed the composition analyze of used cutting inserts. Analyzes of the machined material were also performed to confirm the declarations from the supplier.
{"title":"Microscopic Wear Analysis of Indexable Inserts after Machining of 34CrNiMo6 Steel","authors":"Nataša Náprstková, Karel Šramhauser, Iryna Hren, Jan Novotný, Jan Sviantek","doi":"10.21062/mft.2023.077","DOIUrl":"https://doi.org/10.21062/mft.2023.077","url":null,"abstract":"Machining is an important part of the manufacturing process in the engineering field. Turning is one of these areas. At present, almost exclusively exchangeable cutting inserts are used in production machining. The article describes the research in the field of their wear, where the electron microscopy was used to evaluate the results. Electron microscopy is a very important aid in research in many are-as not only of human activity and also is the important aid in the field of mechanical engineering and manufacturing technologies. The results thus obtained can make in a given area it clearer and better document the resulting situation. Within the experiments, selected cutting inserts were used and the given material was machined. The electron microscope Tescan Vega 3, which is available at the workplace where the experiment was conducted, was used to evaluate the resulting wear. In the frame of experiments was also performed the composition analyze of used cutting inserts. Analyzes of the machined material were also performed to confirm the declarations from the supplier.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the influence of single-wall carbon nanotube (SWCNT) content on the mechanical properties of polyurethane (PU) nanocomposites. The SWCNT content varied from 0 wt% (reference sample) to 2 wt%. Tensile, hardness and Charpy impact tests as well as dynamic me-chanical analysis (DMA) were performed. Based on the test results it was observed that an increase in the content of single-wall carbon nanotubes resulted in significant improvements in material strength and stiffness. Furthermore, atomic force microscopy (AFM) was used to examine microsurface to-pography of the samples and to obtain spectroscopic curves, based on which local elasticity was eval-uated. Overall, performed measurements indicate that the incorporation of SWCNTs into PU matrix makes resultant nanocomposite stiffer and more resistant to deformation. The results highlight the potential of SWCNTs as effective reinforcement of polyurethane-based nanocomposites.
{"title":"The Effect of Single-Wall Carbon Nanotubes Content on the Properties of Polyurethane Nanocomposite","authors":"Dana Bakošová, Alžbeta Bakošová","doi":"10.21062/mft.2023.079","DOIUrl":"https://doi.org/10.21062/mft.2023.079","url":null,"abstract":"This study aimed to investigate the influence of single-wall carbon nanotube (SWCNT) content on the mechanical properties of polyurethane (PU) nanocomposites. The SWCNT content varied from 0 wt% (reference sample) to 2 wt%. Tensile, hardness and Charpy impact tests as well as dynamic me-chanical analysis (DMA) were performed. Based on the test results it was observed that an increase in the content of single-wall carbon nanotubes resulted in significant improvements in material strength and stiffness. Furthermore, atomic force microscopy (AFM) was used to examine microsurface to-pography of the samples and to obtain spectroscopic curves, based on which local elasticity was eval-uated. Overall, performed measurements indicate that the incorporation of SWCNTs into PU matrix makes resultant nanocomposite stiffer and more resistant to deformation. The results highlight the potential of SWCNTs as effective reinforcement of polyurethane-based nanocomposites.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134902769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the automotive industry, deep-drawn sheet metals are widely used and protective coatings are ap-plied to its surfaces to improve certain performance properties (e.g. to increase corrosion resistance). Sheets with these coatings are stressed during the forming process of the part and cracking of the protective coating may occur. The main goal of this paper is to determine the resistance of a Zn-Al-Mg based protective coating to uniaxial and triaxial stresses, and also to determine how effective anticorrosion resistance the coating provides to the base steel matrix in the event that cracking occurs. It has been shown that both uniaxial and triaxial loading leads to a failure of the Zn-Al-Mg coating integrity. Salt spray corrosion tests of 3 and 6 weeks were subsequently performed on both deformed and undeformed base material samples. These tests showed that a continuous Al2O3 layer is formed between the steel matrix and the coating, which, irrespective of the formation of cracks in the coating, is the main contributor to the increase in corrosion resistance of the sheet.
{"title":"Determination of the Effect of Deformation on the Corrosion Resistance of Zn-Al-Mg Coated Sheets","authors":"Martin Švec, Iva Nováková, Pavel Solfronk","doi":"10.21062/mft.2023.080","DOIUrl":"https://doi.org/10.21062/mft.2023.080","url":null,"abstract":"In the automotive industry, deep-drawn sheet metals are widely used and protective coatings are ap-plied to its surfaces to improve certain performance properties (e.g. to increase corrosion resistance). Sheets with these coatings are stressed during the forming process of the part and cracking of the protective coating may occur. The main goal of this paper is to determine the resistance of a Zn-Al-Mg based protective coating to uniaxial and triaxial stresses, and also to determine how effective anticorrosion resistance the coating provides to the base steel matrix in the event that cracking occurs. It has been shown that both uniaxial and triaxial loading leads to a failure of the Zn-Al-Mg coating integrity. Salt spray corrosion tests of 3 and 6 weeks were subsequently performed on both deformed and undeformed base material samples. These tests showed that a continuous Al2O3 layer is formed between the steel matrix and the coating, which, irrespective of the formation of cracks in the coating, is the main contributor to the increase in corrosion resistance of the sheet.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petr Beneš, Tomáš Vrána, David Bricín, Antonín Kříž
The article deals with the possibility of increasing mechanical and utility properties by means of regenerative heat treatment. Experimental program is focused on the heat treatment of low-alloy heat-resistant steel EN ISO 14MoV6-3. This steel has been used since the 1970s for high-temperature exposed components in practically all coal-fired thermal power plants in the Czech Republic. Thus, steel EN ISO 14MoV6-3 is currently the best studied refractory material whose data, collected from experimental creep behaviour tests, exceeds the computational service time 2.105 hours. In order to remain competitive in the new energy mix, conventional steam power plants are forced to adapt to the requirements of semi-scheduled power generation. However, these plants were not originally designed for such operation and therefore have to adapt to new demands on the timing of the power provided, including requirements to reduce overall plant emissions and to increase the efficiency of power generation. These components are now subjected to substantially increased cyclic stresses due to power changes during half-cap operation. These stresses have a major impact on the material lifetime and therefore on the overall performance and lifetime of the plant.
本文讨论了利用蓄热式热处理提高机械性能和实用性能的可能性。实验方案主要针对低合金耐热材料steel EN ISO 14MoV6-3的热处理。自20世纪70年代以来,这种钢材一直用于捷克共和国几乎所有燃煤火力发电厂的高温暴露部件。因此,钢材EN ISO 14MoV6-3Â是目前研究得最好的耐火材料,其从实验蠕变行为测试中收集的数据超过了计算使用时间2.105小时。为了在新的能源结构中保持竞争力,传统的蒸汽发电厂被迫适应半计划发电的要求。然而,这些电厂最初并不是为这种运行而设计的,因此必须适应对供电时间的新要求,包括减少电厂整体排放和提高发电效率的要求。由于在半封盖操作期间功率的变化,这些部件现在承受了大幅增加的循环应力。这些应力对材料寿命有重大影响,因此对工厂的整体性能和寿命也有重大影响。
{"title":"Possibilities of Restoring the Plasticity of Operationally Degraded Steel EN ISO 14MoV6-3","authors":"Petr Beneš, Tomáš Vrána, David Bricín, Antonín Kříž","doi":"10.21062/mft.2023.081","DOIUrl":"https://doi.org/10.21062/mft.2023.081","url":null,"abstract":"The article deals with the possibility of increasing mechanical and utility properties by means of regenerative heat treatment. Experimental program is focused on the heat treatment of low-alloy heat-resistant steel EN ISO 14MoV6-3. This steel has been used since the 1970s for high-temperature exposed components in practically all coal-fired thermal power plants in the Czech Republic. Thus, steel EN ISO 14MoV6-3 is currently the best studied refractory material whose data, collected from experimental creep behaviour tests, exceeds the computational service time 2.105 hours. In order to remain competitive in the new energy mix, conventional steam power plants are forced to adapt to the requirements of semi-scheduled power generation. However, these plants were not originally designed for such operation and therefore have to adapt to new demands on the timing of the power provided, including requirements to reduce overall plant emissions and to increase the efficiency of power generation. These components are now subjected to substantially increased cyclic stresses due to power changes during half-cap operation. These stresses have a major impact on the material lifetime and therefore on the overall performance and lifetime of the plant.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The subject of research is the kinematic parameters of a biplanetary mechanism of the intermitted mixing machines. The article substantiates analytical expressions for determining the kinematic parameters of the drives of the working body of the intermitted mixing machines with planetary ones with double satellites and biplanetary mechanisms; the laws of change of displacements, velocities and accelerations of the points of the working body for drives with planetary one with double satellites and biplanetary mechanisms are determined; the regularities of the influence of the velocity parameters of the driving links on the kinematic characteristics of these mechanisms are established.
{"title":"Kinematic Parameters of the Biplanetary Mechanism (Intermittent Mixing Machines)","authors":"Erkin Nematov, Amon Berdiev, Peng Wang","doi":"10.21062/mft.2023.073","DOIUrl":"https://doi.org/10.21062/mft.2023.073","url":null,"abstract":"The subject of research is the kinematic parameters of a biplanetary mechanism of the intermitted mixing machines. The article substantiates analytical expressions for determining the kinematic parameters of the drives of the working body of the intermitted mixing machines with planetary ones with double satellites and biplanetary mechanisms; the laws of change of displacements, velocities and accelerations of the points of the working body for drives with planetary one with double satellites and biplanetary mechanisms are determined; the regularities of the influence of the velocity parameters of the driving links on the kinematic characteristics of these mechanisms are established.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianewei Wang, Haikuo Zhao, Fei Xie, Chenyang Li, Xiulian Li
In order to accumulate experience in the design and manufacturing of the toroidal field coils for the China Fusion Engineering Test Reactor, a model coil of mixed Nb3Sn-NbTi superconducting magnet with a maximum magnetic field variation rate of 1.5 T/s has been developed at the Institute of Plasma Physics, Chinese Academy of Sciences. The preload system, as one of the key components of the model coil, plays a crucial role in maintaining the overall integrity and stability of the model coil. First the magnetic field and electromagnetic forces of the model coil under extreme conditions are calculated based on Maxwell's equations. Then, the mechanical performance of the model coil at room and cryogenic temperatures is analyzed. To addressing the issue of excessive stress in the preload components of the model coil under preload, several optimization design schemes are proposed and iteratively analyzed. Finally, stress linearization is performed, and stress evaluation is conducted based on the analytical design. The assessment results indicate that certain optimization schemes enable the preload components to fully meet the operational requirements at both room and cryogenic temperatures. The outcomes presented in the paper will provide reference for the subsequent design and manufacturing of the central solenoid coil.
{"title":"The Mechanical Analyses and Structural Optimization of CSMC Preload System under Multi-load Cases","authors":"Xianewei Wang, Haikuo Zhao, Fei Xie, Chenyang Li, Xiulian Li","doi":"10.21062/mft.2023.075","DOIUrl":"https://doi.org/10.21062/mft.2023.075","url":null,"abstract":"In order to accumulate experience in the design and manufacturing of the toroidal field coils for the China Fusion Engineering Test Reactor, a model coil of mixed Nb3Sn-NbTi superconducting magnet with a maximum magnetic field variation rate of 1.5 T/s has been developed at the Institute of Plasma Physics, Chinese Academy of Sciences. The preload system, as one of the key components of the model coil, plays a crucial role in maintaining the overall integrity and stability of the model coil. First the mag\u0002netic field and electromagnetic forces of the model coil under extreme conditions are calculated based on Maxwell's equations. Then, the mechanical performance of the model coil at room and cryogenic temperatures is analyzed. To addressing the issue of excessive stress in the preload components of the model coil under preload, several optimization design schemes are proposed and iteratively analyzed. Finally, stress linearization is performed, and stress evaluation is conducted based on the analytical de\u0002sign. The assessment results indicate that certain optimization schemes enable the preload components to fully meet the operational requirements at both room and cryogenic temperatures. The outcomes pre\u0002sented in the paper will provide reference for the subsequent design and manufacturing of the central solenoid coil.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artur Meller, Marcin Suszyński, Stanisław Legutko, Marek Trączyński, Adrian Mróz, Vit Cernohlavek
Article presents a novel approach to addressing the challenge of forge-free filling of gas cylinder valve knobs in the context of the pneumatic shock absorber utilized within elevator systems. The shock absorber is a critical component responsible for ensuring accurate and efficient transportation of charge material to the electric inductor of automatic hot forging presses. Precise control of the shock absorber's operation is essential for maintaining proper system functionality and minimizing deficiencies. To investigate the system's response to changes in shock absorber operating parameters, the authors conducted a comprehensive simulation. The simulation results revealed that by identifying specific and optimal operational characteristics, the level of deficiencies can be significantly reduced. These findings offer valuable insights into system behavior, facilitating the optimization of shock absorber operation and overall improvement of the hot forging process. Implementation of the optimized shock absorber operation based on the simulation outcomes can enhance productivity, cost-efficiency, and quality in the hot forging industry.
{"title":"Optimizing Shock Absorber Operation for Improved Hot Forging Efficiency","authors":"Artur Meller, Marcin Suszyński, Stanisław Legutko, Marek Trączyński, Adrian Mróz, Vit Cernohlavek","doi":"10.21062/mft.2023.074","DOIUrl":"https://doi.org/10.21062/mft.2023.074","url":null,"abstract":"Article presents a novel approach to addressing the challenge of forge-free filling of gas cylinder valve knobs in the context of the pneumatic shock absorber utilized within elevator systems. The shock absorber is a critical component responsible for ensuring accurate and efficient transportation of charge material to the electric inductor of automatic hot forging presses. Precise control of the shock absorber's operation is essential for maintaining proper system functionality and minimizing deficiencies. To investigate the system's response to changes in shock absorber operating parameters, the authors conducted a comprehensive simulation. The simulation results revealed that by identifying specific and optimal operational characteristics, the level of deficiencies can be significantly reduced. These findings offer valuable insights into system behavior, facilitating the optimization of shock absorber operation and overall improvement of the hot forging process. Implementation of the optimized shock absorber operation based on the simulation outcomes can enhance productivity, cost-efficiency, and quality in the hot forging industry.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}