Liyong Zhang, Tianle Zheng, Tongjie Li, Juan Wang, Changlu Wang, Yehu Jiang, Chengyu Li, Fengxia Yuan, Zhihua Yao
{"title":"Precision Forming Process Analysis and Forming Process Simulation of Integrated Structural Gear for New Energy Vehicles","authors":"Liyong Zhang, Tianle Zheng, Tongjie Li, Juan Wang, Changlu Wang, Yehu Jiang, Chengyu Li, Fengxia Yuan, Zhihua Yao","doi":"10.21062/mft.2023.102","DOIUrl":"https://doi.org/10.21062/mft.2023.102","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"44 3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138594052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a Photoelectric Measuring Robot for Straightness of Deep/Blind Hole with Automatic Centering Function","authors":"Haifeng Zhao","doi":"10.21062/mft.2023.098","DOIUrl":"https://doi.org/10.21062/mft.2023.098","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"44 17","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138593473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Abd-Eltwab, Gamal I. Helal, Mohamed N. El-Sheikh, E. K. Saied, Ahmed M. Atia
{"title":"An Investigation into Conventional Spinning Process Using Ball Shaped Rollers as Forming Tool","authors":"A. A. Abd-Eltwab, Gamal I. Helal, Mohamed N. El-Sheikh, E. K. Saied, Ahmed M. Atia","doi":"10.21062/mft.2023.084","DOIUrl":"https://doi.org/10.21062/mft.2023.084","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"47 23","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138593079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FEM Simulation of the Flange Turning in the Production of Aluminium Aerosol Cans","authors":"C. Felhő, I. Sztankovics, Z. Maros, K. Kun-Bodnár","doi":"10.21062/mft.2023.104","DOIUrl":"https://doi.org/10.21062/mft.2023.104","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"17 4","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138604132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Study of High-density Polyethylene (HDPE) and Polypropylene (PP) Melt Rheology Using Single-screw Extruder at Different Extrusion Conditions","authors":"Fadi Alzarzouri, J. Skočilas","doi":"10.21062/mft.2023.103","DOIUrl":"https://doi.org/10.21062/mft.2023.103","url":null,"abstract":"","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":" 3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138616950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nataša Náprstková, Karel Šramhauser, Iryna Hren, Jan Novotný, Jan Sviantek
Machining is an important part of the manufacturing process in the engineering field. Turning is one of these areas. At present, almost exclusively exchangeable cutting inserts are used in production machining. The article describes the research in the field of their wear, where the electron microscopy was used to evaluate the results. Electron microscopy is a very important aid in research in many are-as not only of human activity and also is the important aid in the field of mechanical engineering and manufacturing technologies. The results thus obtained can make in a given area it clearer and better document the resulting situation. Within the experiments, selected cutting inserts were used and the given material was machined. The electron microscope Tescan Vega 3, which is available at the workplace where the experiment was conducted, was used to evaluate the resulting wear. In the frame of experiments was also performed the composition analyze of used cutting inserts. Analyzes of the machined material were also performed to confirm the declarations from the supplier.
{"title":"Microscopic Wear Analysis of Indexable Inserts after Machining of 34CrNiMo6 Steel","authors":"Nataša Náprstková, Karel Šramhauser, Iryna Hren, Jan Novotný, Jan Sviantek","doi":"10.21062/mft.2023.077","DOIUrl":"https://doi.org/10.21062/mft.2023.077","url":null,"abstract":"Machining is an important part of the manufacturing process in the engineering field. Turning is one of these areas. At present, almost exclusively exchangeable cutting inserts are used in production machining. The article describes the research in the field of their wear, where the electron microscopy was used to evaluate the results. Electron microscopy is a very important aid in research in many are-as not only of human activity and also is the important aid in the field of mechanical engineering and manufacturing technologies. The results thus obtained can make in a given area it clearer and better document the resulting situation. Within the experiments, selected cutting inserts were used and the given material was machined. The electron microscope Tescan Vega 3, which is available at the workplace where the experiment was conducted, was used to evaluate the resulting wear. In the frame of experiments was also performed the composition analyze of used cutting inserts. Analyzes of the machined material were also performed to confirm the declarations from the supplier.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"59 24","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134900779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the influence of single-wall carbon nanotube (SWCNT) content on the mechanical properties of polyurethane (PU) nanocomposites. The SWCNT content varied from 0 wt% (reference sample) to 2 wt%. Tensile, hardness and Charpy impact tests as well as dynamic me-chanical analysis (DMA) were performed. Based on the test results it was observed that an increase in the content of single-wall carbon nanotubes resulted in significant improvements in material strength and stiffness. Furthermore, atomic force microscopy (AFM) was used to examine microsurface to-pography of the samples and to obtain spectroscopic curves, based on which local elasticity was eval-uated. Overall, performed measurements indicate that the incorporation of SWCNTs into PU matrix makes resultant nanocomposite stiffer and more resistant to deformation. The results highlight the potential of SWCNTs as effective reinforcement of polyurethane-based nanocomposites.
{"title":"The Effect of Single-Wall Carbon Nanotubes Content on the Properties of Polyurethane Nanocomposite","authors":"Dana Bakošová, Alžbeta Bakošová","doi":"10.21062/mft.2023.079","DOIUrl":"https://doi.org/10.21062/mft.2023.079","url":null,"abstract":"This study aimed to investigate the influence of single-wall carbon nanotube (SWCNT) content on the mechanical properties of polyurethane (PU) nanocomposites. The SWCNT content varied from 0 wt% (reference sample) to 2 wt%. Tensile, hardness and Charpy impact tests as well as dynamic me-chanical analysis (DMA) were performed. Based on the test results it was observed that an increase in the content of single-wall carbon nanotubes resulted in significant improvements in material strength and stiffness. Furthermore, atomic force microscopy (AFM) was used to examine microsurface to-pography of the samples and to obtain spectroscopic curves, based on which local elasticity was eval-uated. Overall, performed measurements indicate that the incorporation of SWCNTs into PU matrix makes resultant nanocomposite stiffer and more resistant to deformation. The results highlight the potential of SWCNTs as effective reinforcement of polyurethane-based nanocomposites.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"58 40","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134902769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the automotive industry, deep-drawn sheet metals are widely used and protective coatings are ap-plied to its surfaces to improve certain performance properties (e.g. to increase corrosion resistance). Sheets with these coatings are stressed during the forming process of the part and cracking of the protective coating may occur. The main goal of this paper is to determine the resistance of a Zn-Al-Mg based protective coating to uniaxial and triaxial stresses, and also to determine how effective anticorrosion resistance the coating provides to the base steel matrix in the event that cracking occurs. It has been shown that both uniaxial and triaxial loading leads to a failure of the Zn-Al-Mg coating integrity. Salt spray corrosion tests of 3 and 6 weeks were subsequently performed on both deformed and undeformed base material samples. These tests showed that a continuous Al2O3 layer is formed between the steel matrix and the coating, which, irrespective of the formation of cracks in the coating, is the main contributor to the increase in corrosion resistance of the sheet.
{"title":"Determination of the Effect of Deformation on the Corrosion Resistance of Zn-Al-Mg Coated Sheets","authors":"Martin Švec, Iva Nováková, Pavel Solfronk","doi":"10.21062/mft.2023.080","DOIUrl":"https://doi.org/10.21062/mft.2023.080","url":null,"abstract":"In the automotive industry, deep-drawn sheet metals are widely used and protective coatings are ap-plied to its surfaces to improve certain performance properties (e.g. to increase corrosion resistance). Sheets with these coatings are stressed during the forming process of the part and cracking of the protective coating may occur. The main goal of this paper is to determine the resistance of a Zn-Al-Mg based protective coating to uniaxial and triaxial stresses, and also to determine how effective anticorrosion resistance the coating provides to the base steel matrix in the event that cracking occurs. It has been shown that both uniaxial and triaxial loading leads to a failure of the Zn-Al-Mg coating integrity. Salt spray corrosion tests of 3 and 6 weeks were subsequently performed on both deformed and undeformed base material samples. These tests showed that a continuous Al2O3 layer is formed between the steel matrix and the coating, which, irrespective of the formation of cracks in the coating, is the main contributor to the increase in corrosion resistance of the sheet.","PeriodicalId":38629,"journal":{"name":"Manufacturing Technology","volume":"51 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}