Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10228901
Qingsong Liu, Zhixuan Fang
We consider the task scheduling scenario where the controller activates one from K task types at each time. Each task induces a random completion time, and a reward is obtained only after the task is completed. The statistics of the completion time and the reward distributions of all task types are unknown to the controller. The controller needs to learn to schedule tasks to maximize the accumulated reward within a given time horizon T . Motivated by the practical scenarios, we require the designed policy to satisfy a system throughput constraint. In addition, we introduce the interruption mechanism to terminate ongoing tasks that last longer than certain deadlines. To address this scheduling problem, we model it as an online learning problem with deadline and throughput constraints. Then, we characterize the optimal offline policy and develop efficient online learning algorithms based on the Lyapunov method. We prove that our online learning algorithm achieves an $O(sqrt T )$ regret and zero constraint violations. We also conduct simulations to evaluate the performance of our developed learning algorithms.
{"title":"Learning to Schedule Tasks with Deadline and Throughput Constraints","authors":"Qingsong Liu, Zhixuan Fang","doi":"10.1109/INFOCOM53939.2023.10228901","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228901","url":null,"abstract":"We consider the task scheduling scenario where the controller activates one from K task types at each time. Each task induces a random completion time, and a reward is obtained only after the task is completed. The statistics of the completion time and the reward distributions of all task types are unknown to the controller. The controller needs to learn to schedule tasks to maximize the accumulated reward within a given time horizon T . Motivated by the practical scenarios, we require the designed policy to satisfy a system throughput constraint. In addition, we introduce the interruption mechanism to terminate ongoing tasks that last longer than certain deadlines. To address this scheduling problem, we model it as an online learning problem with deadline and throughput constraints. Then, we characterize the optimal offline policy and develop efficient online learning algorithms based on the Lyapunov method. We prove that our online learning algorithm achieves an $O(sqrt T )$ regret and zero constraint violations. We also conduct simulations to evaluate the performance of our developed learning algorithms.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116483429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10228913
Aakriti Adhikari, Sanjib Sur
We propose Argosleep, a millimeter-wave (mmWave) wireless sensors based sleep posture monitoring system that predicts the 3D location of body joints of a person during sleep. Argosleep leverages deep learning models and knowledge of human anatomical features to solve challenges with low-resolution, specularity, and aliasing in existing mmWave devices. Argosleep builds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction, Argosleep designs a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluate Argosleep with real data collected from COTS mmWave devices for 8 volunteers of diverse ages, gender, and height performing different sleep postures. We observe that Argosleep identifies the toss-turn events accurately and predicts 3D location of body joints with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications.
{"title":"Argosleep: Monitoring Sleep Posture from Commodity Millimeter-Wave Devices","authors":"Aakriti Adhikari, Sanjib Sur","doi":"10.1109/INFOCOM53939.2023.10228913","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228913","url":null,"abstract":"We propose Argosleep, a millimeter-wave (mmWave) wireless sensors based sleep posture monitoring system that predicts the 3D location of body joints of a person during sleep. Argosleep leverages deep learning models and knowledge of human anatomical features to solve challenges with low-resolution, specularity, and aliasing in existing mmWave devices. Argosleep builds the model by learning the relationship between mmWave reflected signals and body postures from thousands of existing samples. Since practical sleep also involves sudden toss-turns, which could introduce errors in posture prediction, Argosleep designs a state machine based on the reflected signals to classify the sleeping states into rest or toss-turn, and predict the posture only during the rest states. We evaluate Argosleep with real data collected from COTS mmWave devices for 8 volunteers of diverse ages, gender, and height performing different sleep postures. We observe that Argosleep identifies the toss-turn events accurately and predicts 3D location of body joints with accuracy on par with the existing vision-based system, unlocking the potential of mmWave systems for privacy-noninvasive at-home healthcare applications.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127166801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Programmable switches allow data plane to program how packets are processed, which enables flexibility for network management tasks, e.g., packet scheduling and flow measurement. Existing studies focus on program deployment at a single switch, while deployment across the whole data plane is still a challenging issue. In this paper, we present RED, a Resource-Efficient and Distributed program deployment solution for programmable switches. First of all, we compile the data plane programs to estimate the resource utilization and divide them into two categories for further processing. Then, the proposed merging and splitting algorithms are selectively applied to merge or split the pending programs. Finally, we consolidate the scarce resources of the whole data plane to deploy the programs. Extensive experiment results show that 1) RED improves the speedup by two orders of magnitude compared to P4Visor and merges 58.64% more nodes than SPEED; 2) RED makes the overwhelmed programs run normally at a single switch and reduces 3% latency of inter-device scheduling; 3) RED achieves network-wide resource balancing in a distributed way.
{"title":"RED: Distributed Program Deployment for Resource-aware Programmable Switches","authors":"Xingxin Jia, Fuliang Li, Songlin Chen, Chengxi Gao, Pengfei Wang, Xingwei Wang","doi":"10.1109/INFOCOM53939.2023.10228974","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228974","url":null,"abstract":"Programmable switches allow data plane to program how packets are processed, which enables flexibility for network management tasks, e.g., packet scheduling and flow measurement. Existing studies focus on program deployment at a single switch, while deployment across the whole data plane is still a challenging issue. In this paper, we present RED, a Resource-Efficient and Distributed program deployment solution for programmable switches. First of all, we compile the data plane programs to estimate the resource utilization and divide them into two categories for further processing. Then, the proposed merging and splitting algorithms are selectively applied to merge or split the pending programs. Finally, we consolidate the scarce resources of the whole data plane to deploy the programs. Extensive experiment results show that 1) RED improves the speedup by two orders of magnitude compared to P4Visor and merges 58.64% more nodes than SPEED; 2) RED makes the overwhelmed programs run normally at a single switch and reduces 3% latency of inter-device scheduling; 3) RED achieves network-wide resource balancing in a distributed way.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124098172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10228881
Ruixiao Zhang, Tianchi Huang, Chen Wu, Lifeng Sun
Streamers are the core competency of the crowd-sourced live streaming (CLS) platform. However, little work has explored how different factors relate to their popularity evolution patterns. In this paper, we will investigate a critical problem, i.e., how to discover the promising streamers in their early stage? To tackle this problem, we first conduct large-scale measurement on a real-world CLS dataset. We find that streamers can indeed be clustered into two evolution types (i.e., rising type and normal type), and these two types of streamers will show differences in some inherent properties. Traditional time-sequential models cannot handle this problem, because they are unable to capture the complicated interactivity and extensive heterogeneity in CLS scenarios. To address their shortcomings, we further propose Niffler, a novel heterogeneous attention temporal graph framework (HATG) for predicting the evolution types of CLS streamers. Specifically, through the graph neural network (GNN) and gated-recurrent-unit (GRU) structure, Niffler can capture both the interactive features and the evolutionary dynamics. Moreover, by integrating the attention mechanism in the model design, Niffler can intelligently preserve the heterogeneity when learning different levels of node representations. We systematically compare Niffler against multiple baselines from different categories, and the experimental results show that our proposed model can achieve the best prediction performance.
{"title":"Who is the Rising Star? Demystifying the Promising Streamers in Crowdsourced Live Streaming","authors":"Ruixiao Zhang, Tianchi Huang, Chen Wu, Lifeng Sun","doi":"10.1109/INFOCOM53939.2023.10228881","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228881","url":null,"abstract":"Streamers are the core competency of the crowd-sourced live streaming (CLS) platform. However, little work has explored how different factors relate to their popularity evolution patterns. In this paper, we will investigate a critical problem, i.e., how to discover the promising streamers in their early stage? To tackle this problem, we first conduct large-scale measurement on a real-world CLS dataset. We find that streamers can indeed be clustered into two evolution types (i.e., rising type and normal type), and these two types of streamers will show differences in some inherent properties. Traditional time-sequential models cannot handle this problem, because they are unable to capture the complicated interactivity and extensive heterogeneity in CLS scenarios. To address their shortcomings, we further propose Niffler, a novel heterogeneous attention temporal graph framework (HATG) for predicting the evolution types of CLS streamers. Specifically, through the graph neural network (GNN) and gated-recurrent-unit (GRU) structure, Niffler can capture both the interactive features and the evolutionary dynamics. Moreover, by integrating the attention mechanism in the model design, Niffler can intelligently preserve the heterogeneity when learning different levels of node representations. We systematically compare Niffler against multiple baselines from different categories, and the experimental results show that our proposed model can achieve the best prediction performance.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126841734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10228868
Saray Sanchez, Kubra Alemdar, Vini Chaudhary, K. Chowdhury
Small form-factor single antenna devices, typically deployed within wireless sensor networks, lack many benefits of multi-antenna receivers like leveraging spatial diversity to enhance signal reception reliability. In this paper, we introduce the theory of achieving spatial diversity in such single-antenna systems by using reconfigurable intelligent surfaces (RIS). Our approach, called ‘RIS-STAR’, proposes a method of proactively perturbing the wireless propagation environment multiple times within the symbol time (that is less than the channel coherence time) through reconfiguring an RIS. By leveraging the stationarity of the channel, RIS-STAR ensures that the only source of perturbation is due to the chosen and controllable RIS configuration. We first formulate the problem to find the set of RIS configurations that maximizes channel hardening, which is a measure of link reliability. Our solution is independent of the transceiver’s relative location with respect to the RIS and does not require channel estimation, alleviating two key implementation concerns. We then evaluate the performance of RIS-STAR using a custom-simulator and an experimental testbed composed of PCB-fabricated RIS. Specifically, we demonstrate how a SISO link can be enhanced to perform similar to a SIMO link attaining an 84.6% channel hardening improvement in presence of strong multipath and non-line-of-sight conditions.
{"title":"RIS-STAR: RIS-based Spatio-Temporal Channel Hardening for Single-Antenna Receivers","authors":"Saray Sanchez, Kubra Alemdar, Vini Chaudhary, K. Chowdhury","doi":"10.1109/INFOCOM53939.2023.10228868","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228868","url":null,"abstract":"Small form-factor single antenna devices, typically deployed within wireless sensor networks, lack many benefits of multi-antenna receivers like leveraging spatial diversity to enhance signal reception reliability. In this paper, we introduce the theory of achieving spatial diversity in such single-antenna systems by using reconfigurable intelligent surfaces (RIS). Our approach, called ‘RIS-STAR’, proposes a method of proactively perturbing the wireless propagation environment multiple times within the symbol time (that is less than the channel coherence time) through reconfiguring an RIS. By leveraging the stationarity of the channel, RIS-STAR ensures that the only source of perturbation is due to the chosen and controllable RIS configuration. We first formulate the problem to find the set of RIS configurations that maximizes channel hardening, which is a measure of link reliability. Our solution is independent of the transceiver’s relative location with respect to the RIS and does not require channel estimation, alleviating two key implementation concerns. We then evaluate the performance of RIS-STAR using a custom-simulator and an experimental testbed composed of PCB-fabricated RIS. Specifically, we demonstrate how a SISO link can be enhanced to perform similar to a SIMO link attaining an 84.6% channel hardening improvement in presence of strong multipath and non-line-of-sight conditions.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133769829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moiré QR Code is a secure encrypted QR code system that can protect the user’s QR code displayed on the screen from being accessed by attackers. However, conventional decryption methods based on image processing techniques suffer from intensive computation and significant decryption latency in practical mobile applications. In this work, we propose a deep learning-based Moiré QR code decryption framework and achieve an excellent decryption performance. Considering the sensitivity of the Moiré phenomenon, collecting training data in the real world is extremely labor and material intensive. To overcome this issue, we develop a physical screen-imaging Moiré simulation methodology to generate a synthetic dataset that covers the entire Moiré-visible area. Extensive experiments show that the proposed decryption network can achieve a low decryption latency (0.02 seconds) and a high decryption rate (98.8%), compared with the previous decryption method with decryption latency (5.4 seconds) and decryption rate (98.6%).
{"title":"Effectively Learning Moiré QR Code Decryption from Simulated Data","authors":"Yu Lu, Hao Pan, Feitong Tan, Yi-Chao Chen, Jiadi Yu, Jinghai He, Guangtao Xue","doi":"10.1109/INFOCOM53939.2023.10229000","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10229000","url":null,"abstract":"Moiré QR Code is a secure encrypted QR code system that can protect the user’s QR code displayed on the screen from being accessed by attackers. However, conventional decryption methods based on image processing techniques suffer from intensive computation and significant decryption latency in practical mobile applications. In this work, we propose a deep learning-based Moiré QR code decryption framework and achieve an excellent decryption performance. Considering the sensitivity of the Moiré phenomenon, collecting training data in the real world is extremely labor and material intensive. To overcome this issue, we develop a physical screen-imaging Moiré simulation methodology to generate a synthetic dataset that covers the entire Moiré-visible area. Extensive experiments show that the proposed decryption network can achieve a low decryption latency (0.02 seconds) and a high decryption rate (98.8%), compared with the previous decryption method with decryption latency (5.4 seconds) and decryption rate (98.6%).","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117012956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10229073
Dan Xia, Xiaolong Zheng, L. Liu, Huadong Ma
Cross-Technology Communication (CTC) is an emerging technique that enables direct interconnection among incompatible wireless technologies. However, for the downlink from WiFi to multiple IoT technologies, serially emulating and transmitting the data of each IoT technology has extremely low spectrum efficiency. Recent parallel CTC uses IEEE 802.11g to send emulated ZigBee signal and let the BLE receiver decodes its data from the emulated ZigBee signal with a dedicated codebook. It still has a low spectrum efficiency because IEEE 802.11g exclusively uses the whole channel. Besides, the codebook design hinders the reception on commodity BLE devices. In this paper, we propose WiCast, a parallel CTC that uses IEEE 802.11ax to emulate a composite signal that can be received by commodity BLE, ZigBee, and LoRa devices. By taking advantage of OFDMA in 802.11ax, WiCast uses a single Resource Unit (RU) for parallel CTC and sets other RUs free for high-rate WiFi users. But such a sophisticated composite signal is very easily distorted by emulation imperfections, dynamic channel noises, cyclic prefix, and center frequency offset. We propose a CTC link model that jointly models the emulation errors and channel distortions. Then we carve the emulated signal with elaborate compensations in both time and frequency domains to solve the above distortion problem. We implement a prototype of WiCast on the USRP platform and commodity devices. The extensive experiments demonstrate WiCast can achieve an efficient parallel transmission with the aggregated goodput up to 390.24kbps.
{"title":"Parallel Cross-technology Transmission from IEEE 802.11ax to Heterogeneous IoT Devices","authors":"Dan Xia, Xiaolong Zheng, L. Liu, Huadong Ma","doi":"10.1109/INFOCOM53939.2023.10229073","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10229073","url":null,"abstract":"Cross-Technology Communication (CTC) is an emerging technique that enables direct interconnection among incompatible wireless technologies. However, for the downlink from WiFi to multiple IoT technologies, serially emulating and transmitting the data of each IoT technology has extremely low spectrum efficiency. Recent parallel CTC uses IEEE 802.11g to send emulated ZigBee signal and let the BLE receiver decodes its data from the emulated ZigBee signal with a dedicated codebook. It still has a low spectrum efficiency because IEEE 802.11g exclusively uses the whole channel. Besides, the codebook design hinders the reception on commodity BLE devices. In this paper, we propose WiCast, a parallel CTC that uses IEEE 802.11ax to emulate a composite signal that can be received by commodity BLE, ZigBee, and LoRa devices. By taking advantage of OFDMA in 802.11ax, WiCast uses a single Resource Unit (RU) for parallel CTC and sets other RUs free for high-rate WiFi users. But such a sophisticated composite signal is very easily distorted by emulation imperfections, dynamic channel noises, cyclic prefix, and center frequency offset. We propose a CTC link model that jointly models the emulation errors and channel distortions. Then we carve the emulated signal with elaborate compensations in both time and frequency domains to solve the above distortion problem. We implement a prototype of WiCast on the USRP platform and commodity devices. The extensive experiments demonstrate WiCast can achieve an efficient parallel transmission with the aggregated goodput up to 390.24kbps.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134205886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10229035
Zhe Chen, Tianyue Zheng, Chao Cai, Yue-Xing Gao, Pengfei Hu, Jun Luo
Vibration sensing is crucial to human life and work, as vibrations indicate the status of their respective sources (e.g., heartbeat to human health condition). Given the inconvenience of contact sensing, both academia and industry have been intensively exploring contact-free vibration sensing, with several major developments leveraging radio-frequency (RF) technologies made very recently. However, a measurement study systematically comparing these options is still missing. In this paper, we choose to evaluate five representative commercial off-the-shelf (COTS) RF technologies with different carrier frequencies, bandwidths, and waveform designs. We first unify the sensing data format and processing pipeline, and also propose a novel metric v-SNR to quantify sensing quality. Then our extensive evaluations start from controlled experiments for benchmarking, followed by investigations on two real-world applications: machinery vibration measurement and vital sign monitoring. Our comprehensive study reveals that Wi-Fi performs the worst among all five technologies, while a lesser-known UWB-based technology achieves the best overall performance, and others have respective pros and cons in different scenarios.
{"title":"Wider is Better? Contact-free Vibration Sensing via Different COTS-RF Technologies","authors":"Zhe Chen, Tianyue Zheng, Chao Cai, Yue-Xing Gao, Pengfei Hu, Jun Luo","doi":"10.1109/INFOCOM53939.2023.10229035","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10229035","url":null,"abstract":"Vibration sensing is crucial to human life and work, as vibrations indicate the status of their respective sources (e.g., heartbeat to human health condition). Given the inconvenience of contact sensing, both academia and industry have been intensively exploring contact-free vibration sensing, with several major developments leveraging radio-frequency (RF) technologies made very recently. However, a measurement study systematically comparing these options is still missing. In this paper, we choose to evaluate five representative commercial off-the-shelf (COTS) RF technologies with different carrier frequencies, bandwidths, and waveform designs. We first unify the sensing data format and processing pipeline, and also propose a novel metric v-SNR to quantify sensing quality. Then our extensive evaluations start from controlled experiments for benchmarking, followed by investigations on two real-world applications: machinery vibration measurement and vital sign monitoring. Our comprehensive study reveals that Wi-Fi performs the worst among all five technologies, while a lesser-known UWB-based technology achieves the best overall performance, and others have respective pros and cons in different scenarios.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133005449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10228903
Zhaochen She, Yancan Mao, Hailin Xiang, Xin Wang, Richard T. B. Ma
Distributed stream systems provide low latency by processing data as it arrives. However, existing systems do not provide latency guarantee, a critical requirement of real-time analytics, especially for stateful operators under burst and skewed workload. We present StreamSwitch, a control plane for stream systems to bound operator latency while optimizing resource usage. Based on a novel stream switch abstraction that unifies dynamic scaling and load balancing into a holistic control framework, our design incorporates reactive and predictive metrics to deduce the healthiness of executors and prescribes practically optimal scaling and load balancing decisions in time. We implement a prototype of StreamSwitch and integrate it with Apache Flink and Samza. Experimental evaluations on real-world applications and benchmarks show that StreamSwitch provides cost-effective solutions for bounding latency and outperforms the state-of-the-art alternative solutions.
{"title":"StreamSwitch: Fulfilling Latency Service-Layer Agreement for Stateful Streaming","authors":"Zhaochen She, Yancan Mao, Hailin Xiang, Xin Wang, Richard T. B. Ma","doi":"10.1109/INFOCOM53939.2023.10228903","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10228903","url":null,"abstract":"Distributed stream systems provide low latency by processing data as it arrives. However, existing systems do not provide latency guarantee, a critical requirement of real-time analytics, especially for stateful operators under burst and skewed workload. We present StreamSwitch, a control plane for stream systems to bound operator latency while optimizing resource usage. Based on a novel stream switch abstraction that unifies dynamic scaling and load balancing into a holistic control framework, our design incorporates reactive and predictive metrics to deduce the healthiness of executors and prescribes practically optimal scaling and load balancing decisions in time. We implement a prototype of StreamSwitch and integrate it with Apache Flink and Samza. Experimental evaluations on real-world applications and benchmarks show that StreamSwitch provides cost-effective solutions for bounding latency and outperforms the state-of-the-art alternative solutions.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133272303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-17DOI: 10.1109/INFOCOM53939.2023.10229081
Kentaro Kita, Junji Takemasa, Y. Koizumi, T. Hasegawa
A large portion of Internet traffic passes through middleboxes that read or modify messages. However, as more traffic is protected with TLS, middleboxes are becoming unable to provide their functions. To leverage middlebox functionality while preserving communication security, secure middlebox channel protocols have been designed as extensions of TLS. A key idea is that the endpoints explicitly incorporate middleboxes into the TLS handshake and grant each middlebox either the read or the write permission for their messages. Because each middlebox has the least data access privilege, these protocols are resilient against the compromise of a single middlebox. However, the existing studies have not comprehensively analyzed the communication security under the scenarios where multiple middleboxes are compromised. In this paper, we present novel attacks that break the security of the existing protocols under such scenarios and then modify maTLS, the state-of-the-art protocol, so that all the attacks are prevented with marginal overhead.
{"title":"Secure Middlebox Channel over TLS and its Resiliency against Middlebox Compromise","authors":"Kentaro Kita, Junji Takemasa, Y. Koizumi, T. Hasegawa","doi":"10.1109/INFOCOM53939.2023.10229081","DOIUrl":"https://doi.org/10.1109/INFOCOM53939.2023.10229081","url":null,"abstract":"A large portion of Internet traffic passes through middleboxes that read or modify messages. However, as more traffic is protected with TLS, middleboxes are becoming unable to provide their functions. To leverage middlebox functionality while preserving communication security, secure middlebox channel protocols have been designed as extensions of TLS. A key idea is that the endpoints explicitly incorporate middleboxes into the TLS handshake and grant each middlebox either the read or the write permission for their messages. Because each middlebox has the least data access privilege, these protocols are resilient against the compromise of a single middlebox. However, the existing studies have not comprehensively analyzed the communication security under the scenarios where multiple middleboxes are compromised. In this paper, we present novel attacks that break the security of the existing protocols under such scenarios and then modify maTLS, the state-of-the-art protocol, so that all the attacks are prevented with marginal overhead.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128958641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}