Recently, we observed that the TGF-β pathway is altered in 39% of HCCs. The alterations are correlated with a raised HMGA2 level. Therefore, we compared genetic alterations of HMGA2 and 43 TGF-β pathway core genes in HCC patients from TCGA database. Genetic alterations of 15 genes, including INHBE, INHBC, GDF11, ACVRL and TGFB2 out of 43 core genes, highly-moderately matched that of HMGA2. Co-occurrences of mutation amplification, gains, deletions and high/low mRNA of HMGA2 with those of the core genes were highly significant in INHBE, INHBC, ACVR1B, ACVRL and GDF11. Mass spectrometry studies revealed that HMGA2 interacted with an E3 ligase, PJA1, and that this interaction is enhanced by TGF-β treatment in the nuclear of HCC cells. Co-localization of nuclear PJA1 and HMGA2 in HCC cells increased upon TGF-β treatment. Raised HMGA2 levels that occur with alterations in the TGF-β signaling pathway may reflect an altered activity of E3 ligases, such as PJA1, and potentially contribute to the tumor-promoting roles of TGF-β signaling. Here, we report that the co-occurrence of genetic alterations in HMGA2 and TGF-β pathway core genes is implicated in HCC progression, and propose that HMGA2 and PJA1 may be potential novel targets in dysfunctional TGF-β signaling in HCC.
{"title":"Alterations in TGF-β signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells.","authors":"Kazufumi Ohshiro, Jian Chen, Jigisha Srivastav, Lopa Mishra, Bibhuti Mishra","doi":"10.18632/genesandcancer.199","DOIUrl":"https://doi.org/10.18632/genesandcancer.199","url":null,"abstract":"<p><p>Recently, we observed that the TGF-β pathway is altered in 39% of HCCs. The alterations are correlated with a raised HMGA2 level. Therefore, we compared genetic alterations of HMGA2 and 43 TGF-β pathway core genes in HCC patients from TCGA database. Genetic alterations of 15 genes, including INHBE, INHBC, GDF11, ACVRL and TGFB2 out of 43 core genes, highly-moderately matched that of HMGA2. Co-occurrences of mutation amplification, gains, deletions and high/low mRNA of HMGA2 with those of the core genes were highly significant in INHBE, INHBC, ACVR1B, ACVRL and GDF11. Mass spectrometry studies revealed that HMGA2 interacted with an E3 ligase, PJA1, and that this interaction is enhanced by TGF-β treatment in the nuclear of HCC cells. Co-localization of nuclear PJA1 and HMGA2 in HCC cells increased upon TGF-β treatment. Raised HMGA2 levels that occur with alterations in the TGF-β signaling pathway may reflect an altered activity of E3 ligases, such as PJA1, and potentially contribute to the tumor-promoting roles of TGF-β signaling. Here, we report that the co-occurrence of genetic alterations in HMGA2 and TGF-β pathway core genes is implicated in HCC progression, and propose that HMGA2 and PJA1 may be potential novel targets in dysfunctional TGF-β signaling in HCC.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"11 1-2","pages":"43-52"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38079456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Backgrounds and aims: Hepatocellular Carcinoma (HCC) is the leading cause of cancer-related mortality across the world. Non-viral etiological factors including obesity and metabolic syndrome have now become prevalent cause of hepatocellular carcinoma. Sonic Hedgehog (SHH) pathway is activated in hepatocellular carcinoma but its role in regulation of lipogenic molecules during the hepatocarcinogenesis is not known. The aim of present study is to explore the role of SHH pathway in fatty changes associated with hepatocarcinogenesis at different stages and to further correlate the expression of SHH with lipogenic pathways.
Results: Our results demonstrated significant increase in lipidosis and fibrosis in DEN+CCl4 treated animals. It was simultaneously associated with the enhanced expression level of SHH, E2F1, adiponectin, and lipogenic molecules in DEN+CCl4 treated animals. These results were also corroborated with the similar findings in higher stage patients' biospecimens.
Methods: N-Nitrosodiethylamine (DEN) and Carbon TetraChloride (CCl4) induced hepatocellular acrcinoma model in male Wistar rats were established to study the expression level of SHH pathway and associated fatty changes during different stages of hepatocarcinogenesis. The expression levels of SHH, E2F1, and lipogenic molecules were checked at different stages of hepatocellular carcinoma. These results were further compared with biospecimens of hepatocellular carcinoma patients of different stages.
Conclusions: Our results revealed an unknown aspect of SHH pathway in hepatocarcinogenesis via its control over lipogenesis. It gives insight into the lipogenic properties of DEN+CCl4 induced rodent hepatocarcinogenesis model and how SHH pathway operate to arbitrate this response.
{"title":"Fatty changes associated with N-Nitrosodiethylamine (DEN) induced hepatocellular carcinoma: a role of sonic hedgehog signaling pathway.","authors":"Anindita Tripathy, Sudhir Thakurela, Manoj Kumar Sahu, Kanishka Uthansingh, Ayaskanta Singh, Jimmy Narayan, Amrendra Kumar Ajay, Vinay Singh, Ratna Kumari","doi":"10.18632/genesandcancer.203","DOIUrl":"https://doi.org/10.18632/genesandcancer.203","url":null,"abstract":"<p><strong>Backgrounds and aims: </strong>Hepatocellular Carcinoma (HCC) is the leading cause of cancer-related mortality across the world. Non-viral etiological factors including obesity and metabolic syndrome have now become prevalent cause of hepatocellular carcinoma. Sonic Hedgehog (SHH) pathway is activated in hepatocellular carcinoma but its role in regulation of lipogenic molecules during the hepatocarcinogenesis is not known. The aim of present study is to explore the role of SHH pathway in fatty changes associated with hepatocarcinogenesis at different stages and to further correlate the expression of SHH with lipogenic pathways.</p><p><strong>Results: </strong>Our results demonstrated significant increase in lipidosis and fibrosis in DEN+CCl4 treated animals. It was simultaneously associated with the enhanced expression level of SHH, E2F1, adiponectin, and lipogenic molecules in DEN+CCl4 treated animals. These results were also corroborated with the similar findings in higher stage patients' biospecimens.</p><p><strong>Methods: </strong>N-Nitrosodiethylamine (DEN) and Carbon TetraChloride (CCl4) induced hepatocellular acrcinoma model in male Wistar rats were established to study the expression level of SHH pathway and associated fatty changes during different stages of hepatocarcinogenesis. The expression levels of SHH, E2F1, and lipogenic molecules were checked at different stages of hepatocellular carcinoma. These results were further compared with biospecimens of hepatocellular carcinoma patients of different stages.</p><p><strong>Conclusions: </strong>Our results revealed an unknown aspect of SHH pathway in hepatocarcinogenesis via its control over lipogenesis. It gives insight into the lipogenic properties of DEN+CCl4 induced rodent hepatocarcinogenesis model and how SHH pathway operate to arbitrate this response.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"11 1-2","pages":"66-82"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38079459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.18632/genesandcancer.198
Jane A Branca, Benjamin E Low, Ruth L Saxl, Jennifer K Sargent, Rosalinda A Doty, Michael V Wiles, Beth L Dumont, Muneer G Hasham
Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin's-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.
{"title":"Loss of TRP53 (p53) accelerates tumorigenesis and changes the tumor spectrum of SJL/J mice.","authors":"Jane A Branca, Benjamin E Low, Ruth L Saxl, Jennifer K Sargent, Rosalinda A Doty, Michael V Wiles, Beth L Dumont, Muneer G Hasham","doi":"10.18632/genesandcancer.198","DOIUrl":"https://doi.org/10.18632/genesandcancer.198","url":null,"abstract":"<p><p>Known as the guardian of the genome, transformation-related protein 53 (TRP53) is a well -known tumor suppressor. Here, we describe a novel TRP53 deficient mouse model on a tumor prone background-SJL/J mice. The absence of TRP53 (TRP53 nullizygosity) leads to a shift in the tumor spectrum from a non-Hodgkin's-like disease to thymic lymphomas and testicular teratomas at a very rapid tumor onset averaging ~12 weeks of age. In haplotype studies, comparing tumor prone versus tumor resistant Trp53 null mouse strains, we found that other tumor suppressor, DNA repair and/or immune system genes modulate tumor incidence in TRP53 null strains, suggesting that even a strong tumor suppressor such as TRP53 is modulated by genetic background. Due to their rapid development of tumors, the SJL/J TRP53 null mice generated here can be used as an efficient chemotherapy or immunotherapy screening mouse model.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"11 1-2","pages":"83-94"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38079460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-10-01DOI: 10.18632/genesandcancer.197
Irene Santos-Barriopedro, Yixuan Li, Sonali Bahl, E. Seto
Temozolomide (TMZ) is an alkylating agent chemotherapy drug used as a first-line treatment for glioblastoma multiforme (GBM). O6-methyl-guanine DNA methyltransferase (MGMT) repairs DNA damage induced by TMZ; hence, elevated MGMT levels usually correlate with TMZ resistance. MGMT promoter methylation is a key regulatory mechanism for MGMT expression and is important in overcoming TMZ therapy resistance. To date, little is known about how MGMT expression is regulated beyond promoter methylation. In this work, we show an alternative mechanism by which MGMT levels are regulated independent of its promoter methylation status. We found that inhibition of the histone deacetylase HDAC8 by either HDAC8-specific inhibitor PCI34051 or HDAC8 shRNA decreases MGMT levels in GBM cell lines. Furthermore, the proteasome receptor ADRM1 participates in this MGMT regulation by interacting with HDAC8. Interestingly, this interaction is disrupted by TMZ exclusively in TMZ sensitive cells, suggesting that this MGMT regulatory pathway might be inactivated in TMZ resistant cells. Consequently, HDAC8 inhibition in GBM cell lines increases DNA damage and cell cycle arrest and, eventually, decreases cell viability, likely due to the decrease in MGMT protein levels.
{"title":"HDAC8 affects MGMT levels in glioblastoma cell lines via interaction with the proteasome receptor ADRM1","authors":"Irene Santos-Barriopedro, Yixuan Li, Sonali Bahl, E. Seto","doi":"10.18632/genesandcancer.197","DOIUrl":"https://doi.org/10.18632/genesandcancer.197","url":null,"abstract":"Temozolomide (TMZ) is an alkylating agent chemotherapy drug used as a first-line treatment for glioblastoma multiforme (GBM). O6-methyl-guanine DNA methyltransferase (MGMT) repairs DNA damage induced by TMZ; hence, elevated MGMT levels usually correlate with TMZ resistance. MGMT promoter methylation is a key regulatory mechanism for MGMT expression and is important in overcoming TMZ therapy resistance. To date, little is known about how MGMT expression is regulated beyond promoter methylation. In this work, we show an alternative mechanism by which MGMT levels are regulated independent of its promoter methylation status. We found that inhibition of the histone deacetylase HDAC8 by either HDAC8-specific inhibitor PCI34051 or HDAC8 shRNA decreases MGMT levels in GBM cell lines. Furthermore, the proteasome receptor ADRM1 participates in this MGMT regulation by interacting with HDAC8. Interestingly, this interaction is disrupted by TMZ exclusively in TMZ sensitive cells, suggesting that this MGMT regulatory pathway might be inactivated in TMZ resistant cells. Consequently, HDAC8 inhibition in GBM cell lines increases DNA damage and cell cycle arrest and, eventually, decreases cell viability, likely due to the decrease in MGMT protein levels.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"10 1","pages":"119 - 133"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49505914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-17DOI: 10.5772/INTECHOPEN.88466
A. Qattan
In 1993, a gene silencer known as lin-4 was first discovered in Caenorhabditis elegans and demonstrated to be critical for larval development. Lin-4 belongs to a family of signaling molecules known as non-protein coding microRNAs (miRNAs) which are not only highly conserved in humans, but also involved in the fundamental processes of oncogenesis. While miRNAs are not translated to proteins themselves, they are capable of regulating the expression and translation of other genes thus affecting a multitude of biological and pathological pathways as well as those essential to the malignant landscape. The aim of this chapter is to explore the diverse roles of miRNAs in the context of breast cancer. Following a brief overview of miRNA biogenesis, this chapter covers the production of miRNAs by tumor cells and stromal cells, onco-suppressor miRNAs, use as therapeutics, contribution to therapeutic resistance, and finally their emerging role as biomarkers. into the unique manifestation of BC in an individual. Given that they are actively released by tumor cells into the circulatory system, both monitoring and targeting miRNAs enables the diagnosis and monitoring of BC as well as the opportunity for the development of novel therapeutics. Future studies should employ well standardized methods for sample collection and multi-center global miRNA profiling to reveal novel nuances and robust results regarding miRNA signaling in the context of BC. Taken together, the emerging field of precision oncology may rely on understanding miRNA profiles.
{"title":"Duplicitous Dispositions of Micro-RNAs (miRs) in Breast Cancer","authors":"A. Qattan","doi":"10.5772/INTECHOPEN.88466","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.88466","url":null,"abstract":"In 1993, a gene silencer known as lin-4 was first discovered in Caenorhabditis elegans and demonstrated to be critical for larval development. Lin-4 belongs to a family of signaling molecules known as non-protein coding microRNAs (miRNAs) which are not only highly conserved in humans, but also involved in the fundamental processes of oncogenesis. While miRNAs are not translated to proteins themselves, they are capable of regulating the expression and translation of other genes thus affecting a multitude of biological and pathological pathways as well as those essential to the malignant landscape. The aim of this chapter is to explore the diverse roles of miRNAs in the context of breast cancer. Following a brief overview of miRNA biogenesis, this chapter covers the production of miRNAs by tumor cells and stromal cells, onco-suppressor miRNAs, use as therapeutics, contribution to therapeutic resistance, and finally their emerging role as biomarkers. into the unique manifestation of BC in an individual. Given that they are actively released by tumor cells into the circulatory system, both monitoring and targeting miRNAs enables the diagnosis and monitoring of BC as well as the opportunity for the development of novel therapeutics. Future studies should employ well standardized methods for sample collection and multi-center global miRNA profiling to reveal novel nuances and robust results regarding miRNA signaling in the context of BC. Taken together, the emerging field of precision oncology may rely on understanding miRNA profiles.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"27 24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79197275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-14DOI: 10.5772/INTECHOPEN.86911
Maria Mrakovcic, L. Fröhlich
Cancer is a complex genetic and epigenetic-based disease that has developed a multitude of mechanisms in evading cell death. Deregulation of apoptosis and autophagy are commonly encountered during the development of human tumors. Histone deacetylase inhibitors (HDACi) have been employed to reverse epigeneti-cally deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear however. Experimental evidence of the last decade convincingly reports that the frequently mutated tumor suppressor protein p53 can act either as an activator or as an inhibitor of autophagy depending on its subcellular localization, and linked to its mode of action. Consistently, we recently described p53 as a regulatory switch that governs if histone deacetylase inhibitor-adminis-tered uterine sarcoma cells undergo autophagy or apoptosis. By highlighting this novel finding, we summarize in this chapter the role of p53-mediated signaling during the activation of the autophagic pathway in tumor cells in response to HDACi.
{"title":"Regulation of HDACi−Triggered Autophagy by the Tumor Suppressor Protein p53","authors":"Maria Mrakovcic, L. Fröhlich","doi":"10.5772/INTECHOPEN.86911","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86911","url":null,"abstract":"Cancer is a complex genetic and epigenetic-based disease that has developed a multitude of mechanisms in evading cell death. Deregulation of apoptosis and autophagy are commonly encountered during the development of human tumors. Histone deacetylase inhibitors (HDACi) have been employed to reverse epigeneti-cally deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear however. Experimental evidence of the last decade convincingly reports that the frequently mutated tumor suppressor protein p53 can act either as an activator or as an inhibitor of autophagy depending on its subcellular localization, and linked to its mode of action. Consistently, we recently described p53 as a regulatory switch that governs if histone deacetylase inhibitor-adminis-tered uterine sarcoma cells undergo autophagy or apoptosis. By highlighting this novel finding, we summarize in this chapter the role of p53-mediated signaling during the activation of the autophagic pathway in tumor cells in response to HDACi.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81723182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-07DOI: 10.5772/INTECHOPEN.86798
Jian Zhang, Xia Li, L. Shen, Yan Li, L. Yao
N-myc downstream-regulated gene 2 (NDRG2) was identified as a novel tumor suppressor gene in regulating the proliferation, differentiation, apoptosis and metastasis of multiple cancer types. Consistent with this finding, we and other groups observed the decreased NDRG2 expression in multiple human cancer cell lines and tumors, including breast cancer, colorectal cancer, and cervical cancer. We identified NDRG2 as a stress sensor for hypoxia, DNA damage stimuli and endoplasmic reticulum stress (ERS). Our recent data showed that NDRG2 could promote the differentiation of colorectal cancer cells. Interestingly, we found that reduced NDRG2 expression was a powerful and independent predictor of poor prognosis of colorectal cancer patients. Furthermore, NDRG2 can inhibit epithelial-mesenchymal transition (EMT) by positively regulating E-cadherin expression. Moreover, NDRG2-deficient mice show spontaneous development of various tumor types, including T-cell lymphomas, providing in vivo evidence that NDRG2 functions as a tumor suppressor gene. We believe that NDRG2 is a novel tumor suppressor and might be a therapeutic target for cancer treatment.
{"title":"N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Novel Tumor Suppressor in Multiple Human Cancers","authors":"Jian Zhang, Xia Li, L. Shen, Yan Li, L. Yao","doi":"10.5772/INTECHOPEN.86798","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.86798","url":null,"abstract":"N-myc downstream-regulated gene 2 (NDRG2) was identified as a novel tumor suppressor gene in regulating the proliferation, differentiation, apoptosis and metastasis of multiple cancer types. Consistent with this finding, we and other groups observed the decreased NDRG2 expression in multiple human cancer cell lines and tumors, including breast cancer, colorectal cancer, and cervical cancer. We identified NDRG2 as a stress sensor for hypoxia, DNA damage stimuli and endoplasmic reticulum stress (ERS). Our recent data showed that NDRG2 could promote the differentiation of colorectal cancer cells. Interestingly, we found that reduced NDRG2 expression was a powerful and independent predictor of poor prognosis of colorectal cancer patients. Furthermore, NDRG2 can inhibit epithelial-mesenchymal transition (EMT) by positively regulating E-cadherin expression. Moreover, NDRG2-deficient mice show spontaneous development of various tumor types, including T-cell lymphomas, providing in vivo evidence that NDRG2 functions as a tumor suppressor gene. We believe that NDRG2 is a novel tumor suppressor and might be a therapeutic target for cancer treatment.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79972961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-18DOI: 10.5772/intechopen.86271
Guang-Jer Wu
METCAM/MUC18, a component of cellular membrane, is a cell adhesion molecule (CAM) in the Ig-like gene super-family. It is capable of carrying out general functions of CAMs, such as performing intercellular interactions and interaction of cell with extracellular matrix in tumor microenvironment, interacting with various signaling pathways, and regulating social behaviors of cells. METCAM/MUC18 plays the tumor suppressor function in some cancers, such as colorectal cancer, nasopharyngeal carcinoma type I, one mouse melanoma subline K1735-9, ovarian cancer, pancreatic cancer, prostate cancer PC-3 cell line, and perhaps hemangioma. Possible mechanism in the METCAM/MUC18-mediated tumor suppression is pro-posed. By taking advantage of the tumor suppressor function of METCAM/MUC18, recombinant METCAM/MUC18 proteins and other derived products may be used as therapeutic agents to treat these cancers.
{"title":"METCAM/MUC18: A Novel Tumor Suppressor for Some Cancers","authors":"Guang-Jer Wu","doi":"10.5772/intechopen.86271","DOIUrl":"https://doi.org/10.5772/intechopen.86271","url":null,"abstract":"METCAM/MUC18, a component of cellular membrane, is a cell adhesion molecule (CAM) in the Ig-like gene super-family. It is capable of carrying out general functions of CAMs, such as performing intercellular interactions and interaction of cell with extracellular matrix in tumor microenvironment, interacting with various signaling pathways, and regulating social behaviors of cells. METCAM/MUC18 plays the tumor suppressor function in some cancers, such as colorectal cancer, nasopharyngeal carcinoma type I, one mouse melanoma subline K1735-9, ovarian cancer, pancreatic cancer, prostate cancer PC-3 cell line, and perhaps hemangioma. Possible mechanism in the METCAM/MUC18-mediated tumor suppression is pro-posed. By taking advantage of the tumor suppressor function of METCAM/MUC18, recombinant METCAM/MUC18 proteins and other derived products may be used as therapeutic agents to treat these cancers.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80778174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.18632/genesandcancer.189
Kasturi Banerjee, Shailendra K Gautam, Prakash Kshirsagar, Kathleen A Ross, Gaelle Spagnol, Paul Sorgen, Michael J Wannemuehler, Balaji Narasimhan, Joyce C Solheim, Sushil Kumar, Surinder K Batra, Maneesh Jain
Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4β) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4β-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity. Immature dendritic cells when pulsed with MUC4β-nanovaccine exhibited significant increase in the surface expressions of MHC I and MHC II and costimulatory molecules (CD80 and CD86), as well as, secretion of pro-inflammatory cytokines (IFN-γ, IL-6, and IL-12) as compared to cells exposed to MUC4β alone or MUC4β mixed with blank nanoparticles (MUC4β+NP). Following immunization, as compared to the other formulations, MUC4β-nanovaccine elicited higher IgG2b to IgG1 ratio of anti-MUC4β-antibodies suggesting a predominantly Th1-like class switching. Thus, our findings demonstrate MUC4β-nanovaccine as a novel platform for PC immunotherapy.
{"title":"Amphiphilic polyanhydride-based recombinant MUC4β-nanovaccine activates dendritic cells.","authors":"Kasturi Banerjee, Shailendra K Gautam, Prakash Kshirsagar, Kathleen A Ross, Gaelle Spagnol, Paul Sorgen, Michael J Wannemuehler, Balaji Narasimhan, Joyce C Solheim, Sushil Kumar, Surinder K Batra, Maneesh Jain","doi":"10.18632/genesandcancer.189","DOIUrl":"https://doi.org/10.18632/genesandcancer.189","url":null,"abstract":"<p><p>Mucin 4 (MUC4) is a high molecular weight glycoprotein that is differentially overexpressed in pancreatic cancer (PC), functionally contributes to disease progression, and correlates with poor survival. Further, due to its aberrant glycosylation and extensive splicing, MUC4 is a potential target for cancer immunotherapy. Our previous studies have demonstrated the utility of amphiphilic polyanhydride nanoparticles as a useful platform for the development of protein-based prophylactic and therapeutic vaccines. In the present study, we encapsulated purified recombinant human MUC4-beta (MUC4β) protein in polyanhydride (20:80 CPTEG:CPH) nanoparticles (MUC4β-nanovaccine) and evaluated its ability to activate dendritic cells and induce adaptive immunity. Immature dendritic cells when pulsed with MUC4β-nanovaccine exhibited significant increase in the surface expressions of MHC I and MHC II and costimulatory molecules (CD80 and CD86), as well as, secretion of pro-inflammatory cytokines (IFN-γ, IL-6, and IL-12) as compared to cells exposed to MUC4β alone or MUC4β mixed with blank nanoparticles (MUC4β+NP). Following immunization, as compared to the other formulations, MUC4β-nanovaccine elicited higher IgG2b to IgG1 ratio of anti-MUC4β-antibodies suggesting a predominantly Th1-like class switching. Thus, our findings demonstrate MUC4β-nanovaccine as a novel platform for PC immunotherapy.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"10 3-4","pages":"52-62"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37378285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-01DOI: 10.18632/genesandcancer.191
Noureen Ali, Geetha Venkateswaran, Elizabeth Garcia, Takaaki Landry, Hunter McColl, Consolato Sergi, Amit Persad, Yasser Abuetabh, David D Eisenstat, Sujata Persad
Osteosarcoma (OS) is an aggressive primary bone malignancy that has peak incidence in children and young adults <25 years of age. Despite current multimodal treatments, no significant change in patient outcome has been observed in two decades. Presently, there is a lack of established, reliable baseline prognostic markers for aggressive OS, other than extent and site of disease involvement. The canonical Wnt/β-catenin pathway controls multiple cellular processes, and is known to be a critical pathway in OS progression. This pathway regulates cellular levels of β-catenin, which is a significant player in the oncogenesis and progression of many cancers. We investigated the relationship between β-catenin, more specifically, the transcriptionally active form of β-catenin, Activated β-Catenin (ABC), and OS progression. Using an in vitro model, we observed that cellular/nuclear ABC levels, but not cellular/nuclear β-catenin levels, increase with the degree of aggressiveness in OS. Our results demonstrate a strong association between nuclear-ABC levels and aggressive OS in vitro. Furthermore, we observed significant correlation between positive nuclear-ABC and patient age and tumor stage. Our results support the potential use of ABC as a predictive marker for risk stratification in OS.
{"title":"Osteosarcoma progression is associated with increased nuclear levels and transcriptional activity of activated β-Catenin.","authors":"Noureen Ali, Geetha Venkateswaran, Elizabeth Garcia, Takaaki Landry, Hunter McColl, Consolato Sergi, Amit Persad, Yasser Abuetabh, David D Eisenstat, Sujata Persad","doi":"10.18632/genesandcancer.191","DOIUrl":"https://doi.org/10.18632/genesandcancer.191","url":null,"abstract":"<p><p>Osteosarcoma (OS) is an aggressive primary bone malignancy that has peak incidence in children and young adults <25 years of age. Despite current multimodal treatments, no significant change in patient outcome has been observed in two decades. Presently, there is a lack of established, reliable baseline prognostic markers for aggressive OS, other than extent and site of disease involvement. The canonical Wnt/β-catenin pathway controls multiple cellular processes, and is known to be a critical pathway in OS progression. This pathway regulates cellular levels of β-catenin, which is a significant player in the oncogenesis and progression of many cancers. We investigated the relationship between β-catenin, more specifically, the transcriptionally active form of β-catenin, Activated β-Catenin (ABC), and OS progression. Using an <i>in vitro</i> model, we observed that cellular/nuclear ABC levels, but not cellular/nuclear β-catenin levels, increase with the degree of aggressiveness in OS. Our results demonstrate a strong association between nuclear-ABC levels and aggressive OS <i>in vitro</i>. Furthermore, we observed significant correlation between positive nuclear-ABC and patient age and tumor stage. Our results support the potential use of ABC as a predictive marker for risk stratification in OS.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"10 3-4","pages":"63-79"},"PeriodicalIF":0.0,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6584208/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37378286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}