{"title":"Lateral Flow Immunoassay Strip Based on Confocal Raman Imaging for Ultrasensitive and Rapid Detection of COVID-19 and Bacterial Biomarkers","authors":"Chuan Zhang, Anqi Yang, Sailing He","doi":"10.2528/pierm23101104","DOIUrl":"https://doi.org/10.2528/pierm23101104","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135103449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-physics Analysis and Loss Evaluation of High Frequency Transformer with Non-sinusoidal Excitation","authors":"Sherin Joseph, Shajimon Kalayil John, Kudilil Prasad Pinkymol, Jineeth Joseph, Kappamadathil Raman Muraleedharan Nair","doi":"10.2528/pierm23082304","DOIUrl":"https://doi.org/10.2528/pierm23082304","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135559458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fubin Pang, Shi Chen, Jianfei Ji, Yiyi Jing, Sijia Liu, Chongqing Jiao
{"title":"Low-frequency Magnetic Shielding of a Cavity Formed by Two Imperfectly Conducting Sheets: Effect of Sheet-to-sheet Distance and Comparison with the Single-sheet Configuration","authors":"Fubin Pang, Shi Chen, Jianfei Ji, Yiyi Jing, Sijia Liu, Chongqing Jiao","doi":"10.2528/pierm23082601","DOIUrl":"https://doi.org/10.2528/pierm23082601","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135561471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Series-fed Antenna Array without Beam Deterioration Using Miniaturized Bandpass Filters for Phase-slope Balancing","authors":"Huanhuan Shi, Xin Guo, Wen Wu","doi":"10.2528/pierm23021702","DOIUrl":"https://doi.org/10.2528/pierm23021702","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135612282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
|Generalized Mie theory provides a theoretical solution to the extinction cross-section curve of an electromagnetic scattering event with a multiparticle aggregate, given the con(cid:12)gurational information of the constituent particles. However, deducing the con(cid:12)guration of the aggregate from the extinction cross-section curve is a nontrivial inverse problem that can be cast as a global optimization problem. To address this challenge, we propose a computational scheme that combines global optimization search algorithms with a calculator known as the Generalized Multiparticle Mie-solution. The scheme is tested using mock scattering cross-section curves based on randomly generated aggregate con(cid:12)gurations. The scheme successfully reproduces the scattering curve by minimizing the discrepancy between the two scattering curves. However, the ground-truth con(cid:12)guration is not reproduced, as initially expected. This is due to the inability of the global optimization algorithm scheme used in the present work to correctly locate the global minimum in the high-dimensional parameter space. Nonetheless, the partial success of the proposed scheme to reconstruct the mock curves provides an instructive experience for future attempts to solve the inverse electromagnetic scattering problem by (cid:12)ne-tuning the present approach.
{"title":"Global Optimization for Extinction Curve Reconstruction in Inverse Electromagnetic Scattering of Multiparticle Aggregates","authors":"Ying Li Thong, Tiem Leong Yoon","doi":"10.2528/pierm23052601","DOIUrl":"https://doi.org/10.2528/pierm23052601","url":null,"abstract":"|Generalized Mie theory provides a theoretical solution to the extinction cross-section curve of an electromagnetic scattering event with a multiparticle aggregate, given the con(cid:12)gurational information of the constituent particles. However, deducing the con(cid:12)guration of the aggregate from the extinction cross-section curve is a nontrivial inverse problem that can be cast as a global optimization problem. To address this challenge, we propose a computational scheme that combines global optimization search algorithms with a calculator known as the Generalized Multiparticle Mie-solution. The scheme is tested using mock scattering cross-section curves based on randomly generated aggregate con(cid:12)gurations. The scheme successfully reproduces the scattering curve by minimizing the discrepancy between the two scattering curves. However, the ground-truth con(cid:12)guration is not reproduced, as initially expected. This is due to the inability of the global optimization algorithm scheme used in the present work to correctly locate the global minimum in the high-dimensional parameter space. Nonetheless, the partial success of the proposed scheme to reconstruct the mock curves provides an instructive experience for future attempts to solve the inverse electromagnetic scattering problem by (cid:12)ne-tuning the present approach.","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135651240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
May Abd Elazeem El-Azem Abo-Elhassan, Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein
{"title":"Wideband Circularly Polarized Planar Antenna for X-band Applications","authors":"May Abd Elazeem El-Azem Abo-Elhassan, Asmaa Elsayed Farahat, Khalid Fawzy Ahmed Hussein","doi":"10.2528/pierm23072401","DOIUrl":"https://doi.org/10.2528/pierm23072401","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135501621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
—This paper utilizes an efficient prediction model using the concept of ray-tracing based on the Theory of Geometrical Optics (GO) to predict the signal strength between two wireless sensor nodes within an indoor environment, which can provide aid to designers in the implementation of Wireless Sensor Networks (WSNs). WSN is a technology that is widely used for functions such as collecting and processing data, then transmitting it wirelessly within the network. WSNs are typically autonomous and self-organizing networks of nodes that communicate wirelessly with each other and collaborate to perform tasks such as data processing, sensing, aggregation, and forwarding. With the increasing prevalence of WSNs in indoor environments, installations of numerous sensor nodes are necessary to collect and transmit data in certain areas, which builds up to a single network. Thus, to ensure the functionality of the WSNs, it is of utmost importance to ensure a reliable connection between the nodes, which is directly affected by its location and placement. The prediction model developed in this work is built using MATLAB software, which is then implemented into a Graphical User Interface (GUI) using MATLAB App Designer, which allows modifications to be made to the prediction model as to fit the user’s environment. The results of our prediction model are compared against experimental ones obtained through physical measurements using wireless communications technologies such as ZigBee and Bluetooth Low Energy (BLE).
{"title":"Measurement and Prediction of Signal Strength of Wireless Sensor Network","authors":"Li Yang Foong, Soo Yong Lim, Kheong Sann Chan","doi":"10.2528/pierm23070301","DOIUrl":"https://doi.org/10.2528/pierm23070301","url":null,"abstract":"—This paper utilizes an efficient prediction model using the concept of ray-tracing based on the Theory of Geometrical Optics (GO) to predict the signal strength between two wireless sensor nodes within an indoor environment, which can provide aid to designers in the implementation of Wireless Sensor Networks (WSNs). WSN is a technology that is widely used for functions such as collecting and processing data, then transmitting it wirelessly within the network. WSNs are typically autonomous and self-organizing networks of nodes that communicate wirelessly with each other and collaborate to perform tasks such as data processing, sensing, aggregation, and forwarding. With the increasing prevalence of WSNs in indoor environments, installations of numerous sensor nodes are necessary to collect and transmit data in certain areas, which builds up to a single network. Thus, to ensure the functionality of the WSNs, it is of utmost importance to ensure a reliable connection between the nodes, which is directly affected by its location and placement. The prediction model developed in this work is built using MATLAB software, which is then implemented into a Graphical User Interface (GUI) using MATLAB App Designer, which allows modifications to be made to the prediction model as to fit the user’s environment. The results of our prediction model are compared against experimental ones obtained through physical measurements using wireless communications technologies such as ZigBee and Bluetooth Low Energy (BLE).","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134981399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Assisted Multi-objective Planar Antenna Array Synthesis for Interference Mitigation in Next Generation Wireless Systems","authors":"Sahiti Vankayalapati, Lakshman Pappula","doi":"10.2528/pierm23081903","DOIUrl":"https://doi.org/10.2528/pierm23081903","url":null,"abstract":"","PeriodicalId":39028,"journal":{"name":"Progress in Electromagnetics Research M","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135910041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}