Pub Date : 2021-09-10DOI: 10.46300/9104.2021.15.21
M. V. Klychnikova, Kyaw Ye Ko
In this work, it is shown that the method of the in situ preparation of Cu/LLDPE by combining the formation of a composite and a nanodispersed phase in the viscous-flow state of a polymer makes it possible to achieve a uniform distribution of nanoparticles in the matrix and effectively regulate their mechanical and functional properties. The optimal concentration of Cu nanofiller was found to be 2-5%, allowing to achieve the best mechanical properties. Comparative analysis of the physical and mechanical properties of Cu/LLDPE nanocomposites obtained by various methods shows that the deformation and strength characteristics of the 3CuLLDPE nanocomposite obtained by the in situ method are improved in comparison with the properties of the 3CuLLDPE nanocomposite, prepared by ex situ method. The relationship between the filler content and the modulus of elasticity/tensile strength has been determined. With an increase in the filler content, the elastic modulus increases by 10-20%, and the tensile strength decreases by 30%. Elongation at break for samples with nanofiller content up to 3 wt. % higher than unfilled polymer
{"title":"Investigation of Mechanical Properties of Low-Density Polyethylene with Copper Nanoparticles","authors":"M. V. Klychnikova, Kyaw Ye Ko","doi":"10.46300/9104.2021.15.21","DOIUrl":"https://doi.org/10.46300/9104.2021.15.21","url":null,"abstract":"In this work, it is shown that the method of the in situ preparation of Cu/LLDPE by combining the formation of a composite and a nanodispersed phase in the viscous-flow state of a polymer makes it possible to achieve a uniform distribution of nanoparticles in the matrix and effectively regulate their mechanical and functional properties. The optimal concentration of Cu nanofiller was found to be 2-5%, allowing to achieve the best mechanical properties. Comparative analysis of the physical and mechanical properties of Cu/LLDPE nanocomposites obtained by various methods shows that the deformation and strength characteristics of the 3CuLLDPE nanocomposite obtained by the in situ method are improved in comparison with the properties of the 3CuLLDPE nanocomposite, prepared by ex situ method. The relationship between the filler content and the modulus of elasticity/tensile strength has been determined. With an increase in the filler content, the elastic modulus increases by 10-20%, and the tensile strength decreases by 30%. Elongation at break for samples with nanofiller content up to 3 wt. % higher than unfilled polymer","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49014497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-10DOI: 10.46300/9104.2021.15.23
S. Radaev
The work proposes test one-dimensional models of heat and mass transfer in heat pipes during cooling of active phased antenna arrays, which can be used in processing the test results of flat heat pipes in order to determine their performance characteristics and identify the parameters required for modeling in a more complex setting (for example, in flat and taking into account the presence of several localized sources of heat supply). To take into account the influence of the heat release power on the equilibrium temperature inside the heat pipe, the model has been added to take into account the dependence of the steam saturation temperature on the pressure, which is realized inside the steam pipeline when the heat pipe is heated. Numerous calculations carried out made it possible to refine the mathematical model. In particular, a significant effect on the temperature distribution along the heat pipe is shown, taking into account the dependence of the steam saturation temperature on the pressure in the parawire. It is shown that the introduction of standard functions for the characteristics of the coolant (water) in the liquid and vapor state, as well as taking into account the capillary pressure on temperature, makes it possible to refine the resulting solution.
{"title":"Mathematical Modeling of Heat and Mass Transfer in Heat Pipes in a One-Dimensional Formulation when Cooling Active Phased Antenna Arrays","authors":"S. Radaev","doi":"10.46300/9104.2021.15.23","DOIUrl":"https://doi.org/10.46300/9104.2021.15.23","url":null,"abstract":"The work proposes test one-dimensional models of heat and mass transfer in heat pipes during cooling of active phased antenna arrays, which can be used in processing the test results of flat heat pipes in order to determine their performance characteristics and identify the parameters required for modeling in a more complex setting (for example, in flat and taking into account the presence of several localized sources of heat supply). To take into account the influence of the heat release power on the equilibrium temperature inside the heat pipe, the model has been added to take into account the dependence of the steam saturation temperature on the pressure, which is realized inside the steam pipeline when the heat pipe is heated. Numerous calculations carried out made it possible to refine the mathematical model. In particular, a significant effect on the temperature distribution along the heat pipe is shown, taking into account the dependence of the steam saturation temperature on the pressure in the parawire. It is shown that the introduction of standard functions for the characteristics of the coolant (water) in the liquid and vapor state, as well as taking into account the capillary pressure on temperature, makes it possible to refine the resulting solution.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49158686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-10DOI: 10.46300/9104.2021.15.20
S. Radaev
In this paper, a mathematical model of a multilayer panel made of nanomodified carbon fiber reinforced plastic with asymmetric packing is proposed. The introduction of nanosized particles into the composition of the composite or its components (fiber or binder) allows not only to increase its physical and mechanical properties, but also to improve the picture of the residual stress-strain state. The paper investigates the effect of nanomodification of carbon fiber reinforced plastic on the residual stress-strain state after molding using numerical and analytical methods. Numerous results of computational experiments have been obtained. The results of numerical and analytical modeling are compared with experimental data. Conclusions are drawn about the possibility of reducing the residual stress-strain state in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles. A mathematical model of a multilayer panel made of nano-modified carbon fiber with asymmetric packing has been built. Investigation of the residual stress-strain state of structural elements made of carbon fiber reinforced plastic made it possible to reveal the possibility of reducing the residual stress-strain state and leash in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles.
{"title":"Numerical and Analytical Modeling of Permanent Deformations in Panels Made of Nanomodified Carbon Fiber Reinforced Plastic with Asymmetric Packing","authors":"S. Radaev","doi":"10.46300/9104.2021.15.20","DOIUrl":"https://doi.org/10.46300/9104.2021.15.20","url":null,"abstract":"In this paper, a mathematical model of a multilayer panel made of nanomodified carbon fiber reinforced plastic with asymmetric packing is proposed. The introduction of nanosized particles into the composition of the composite or its components (fiber or binder) allows not only to increase its physical and mechanical properties, but also to improve the picture of the residual stress-strain state. The paper investigates the effect of nanomodification of carbon fiber reinforced plastic on the residual stress-strain state after molding using numerical and analytical methods. Numerous results of computational experiments have been obtained. The results of numerical and analytical modeling are compared with experimental data. Conclusions are drawn about the possibility of reducing the residual stress-strain state in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles. A mathematical model of a multilayer panel made of nano-modified carbon fiber with asymmetric packing has been built. Investigation of the residual stress-strain state of structural elements made of carbon fiber reinforced plastic made it possible to reveal the possibility of reducing the residual stress-strain state and leash in structures with asymmetric reinforcement schemes when using a matrix containing carbon nanoparticles.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48569550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-10DOI: 10.46300/9104.2021.15.22
Y. Utkin, A. Orekhov, T. Hein
In this work, a study is carried out on the introduction of quasicrystal particles into a thermoplastic polymer and it is shown that this leads to changes in the structure of polyethylene. The introduction of quasicrystal particles into a thermoplastic polymer leads to changes in the structure of polyethylene: the degree of crystallinity decreases from 42% (PE) to 27% (10AlCuFe/PE) with increasing concentration of the filler, the ratio of bands corresponding to amorphous and crystalline regions in the IR spectra changes, which indicates on the amorphization of the PE structure. The specimens have improved wear resistance (the wear rate decreased by 96% compared to the original PE), but the friction coefficient remained practically unchanged. It is shown that the addition of quasicrystal nanoparticles in a small amount (up to 10 wt.%) leads to an increase in hardness, but does not have a noticeable effect on the surface roughness. The results obtained indicate that quasicrystals can serve as effective fillers for promising polymeric materials in products for aerospace, instrument making, and other industries.
{"title":"Tribological Properties of Polymer Composite with Impregnated Quasicrystal Nanoparticles","authors":"Y. Utkin, A. Orekhov, T. Hein","doi":"10.46300/9104.2021.15.22","DOIUrl":"https://doi.org/10.46300/9104.2021.15.22","url":null,"abstract":"In this work, a study is carried out on the introduction of quasicrystal particles into a thermoplastic polymer and it is shown that this leads to changes in the structure of polyethylene. The introduction of quasicrystal particles into a thermoplastic polymer leads to changes in the structure of polyethylene: the degree of crystallinity decreases from 42% (PE) to 27% (10AlCuFe/PE) with increasing concentration of the filler, the ratio of bands corresponding to amorphous and crystalline regions in the IR spectra changes, which indicates on the amorphization of the PE structure. The specimens have improved wear resistance (the wear rate decreased by 96% compared to the original PE), but the friction coefficient remained practically unchanged. It is shown that the addition of quasicrystal nanoparticles in a small amount (up to 10 wt.%) leads to an increase in hardness, but does not have a noticeable effect on the surface roughness. The results obtained indicate that quasicrystals can serve as effective fillers for promising polymeric materials in products for aerospace, instrument making, and other industries.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41820925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-09DOI: 10.46300/9104.2021.15.18
F. Djamaluddin
In this study, the researcher carried out a comparative investigation of the crashworthy features of different tubular structures with a quasi-static three bending point, like the foam-filled two and tri circular tube structures. Energy absorption capacities and failure modes of different structures are also studied. Furthermore, the general characteristics are investigated and compared for instance the energy absorption, specific energy absorption and energy-absorbing effectiveness for determining the potential structural components that can be used in the field of vehicle engineering. Experimental results indicated that under the bending conditions, the tri foam-filled structures were higher crashworthiness behaviour than the two foam-filled circular structures. Therefore, this study recommended the use of crashworthy structures, such as foam-filled tri circular tubes due to the increased bending resistance and energy-absorbing effectiveness.
{"title":"Energy Absorption Characteristics of Foam Filled Tri Circular Tube under Bending Loads","authors":"F. Djamaluddin","doi":"10.46300/9104.2021.15.18","DOIUrl":"https://doi.org/10.46300/9104.2021.15.18","url":null,"abstract":"In this study, the researcher carried out a comparative investigation of the crashworthy features of different tubular structures with a quasi-static three bending point, like the foam-filled two and tri circular tube structures. Energy absorption capacities and failure modes of different structures are also studied. Furthermore, the general characteristics are investigated and compared for instance the energy absorption, specific energy absorption and energy-absorbing effectiveness for determining the potential structural components that can be used in the field of vehicle engineering. Experimental results indicated that under the bending conditions, the tri foam-filled structures were higher crashworthiness behaviour than the two foam-filled circular structures. Therefore, this study recommended the use of crashworthy structures, such as foam-filled tri circular tubes due to the increased bending resistance and energy-absorbing effectiveness.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47789451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-09DOI: 10.46300/9104.2021.15.19
N. M. Bugaev, E. Kuznetsova, Kyaw Ye Ko
In this work, it is shown that the advantage of using matrix-stabilized magnetic nanoparticles to obtain polymer nanocomposites based on them is that such nanoparticles retain their dispersion and stability of size and shape in the technological modes of obtaining polymer nanocomposite materials, and thus ensured stable ferro- and superparamagnetic properties of the obtained target products. For the production of films by the method of hot pressing from blanks obtained in an injection molding machine or a mechanochemical mixture, a manual electrically heated hydraulic press was used. The magnetic properties of nanocomposite samples (about 50 mg on average) were studied using a vibration magnetometer. The character of the dependence of the magnetization on the magnitude of the magnetic field confirms the ferromagnetic character of the behavior of the obtained nanocomposites. The resulting film nanocomposites exhibit ferromagnetic properties at room temperature.
{"title":"Thermophysical and Magnetic Properties of Magnetite – Polyethylene Composite","authors":"N. M. Bugaev, E. Kuznetsova, Kyaw Ye Ko","doi":"10.46300/9104.2021.15.19","DOIUrl":"https://doi.org/10.46300/9104.2021.15.19","url":null,"abstract":"In this work, it is shown that the advantage of using matrix-stabilized magnetic nanoparticles to obtain polymer nanocomposites based on them is that such nanoparticles retain their dispersion and stability of size and shape in the technological modes of obtaining polymer nanocomposite materials, and thus ensured stable ferro- and superparamagnetic properties of the obtained target products. For the production of films by the method of hot pressing from blanks obtained in an injection molding machine or a mechanochemical mixture, a manual electrically heated hydraulic press was used. The magnetic properties of nanocomposite samples (about 50 mg on average) were studied using a vibration magnetometer. The character of the dependence of the magnetization on the magnitude of the magnetic field confirms the ferromagnetic character of the behavior of the obtained nanocomposites. The resulting film nanocomposites exhibit ferromagnetic properties at room temperature.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42840633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-07DOI: 10.21203/rs.3.rs-805152/v1
Muhammad Luthfi Sonjaya, M. Mutmainnah, M. Hidayat
This paper presents design and development of plastic waste extruding machine to provide 3D printing filaments. The motivation of this research is to create a 3d printer filament from plastic waste using simple machine components. In addition, another goal is to create valuable items from plastic waste. The research process begins with design, needs analysis, machine rebuilding and electrical assembly, machine function testing, analysis of filament, and filament testing in 3D printing machine. The categories of shredded plastic material were plastic cups (polypropylene, PP) and a mixture of plastic bottles (polyethylene terepththalate, PET) and plastic cups (polypropylene, PP). The analysis of the research was the capacity of the extrusion machine, the best temperature in producing filaments based on shapes and sizes, and testing of 3D printing filaments of plastic waste which was applied to the 3D printing machine. The result showed that 190°C was the greater temperature to heat the barrel, machine capacity of each plastic waste category, and the characteristic plastic waste was almost similar compared to market filament of polylactic acid (PLA) in terms of filament size and 3D printing machine parameter.
{"title":"Construction Of Plastic Waste Extruding Machine To Produce Filaments Of 3D Printing Machine","authors":"Muhammad Luthfi Sonjaya, M. Mutmainnah, M. Hidayat","doi":"10.21203/rs.3.rs-805152/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-805152/v1","url":null,"abstract":"\u0000 This paper presents design and development of plastic waste extruding machine to provide 3D printing filaments. The motivation of this research is to create a 3d printer filament from plastic waste using simple machine components. In addition, another goal is to create valuable items from plastic waste. The research process begins with design, needs analysis, machine rebuilding and electrical assembly, machine function testing, analysis of filament, and filament testing in 3D printing machine. The categories of shredded plastic material were plastic cups (polypropylene, PP) and a mixture of plastic bottles (polyethylene terepththalate, PET) and plastic cups (polypropylene, PP). The analysis of the research was the capacity of the extrusion machine, the best temperature in producing filaments based on shapes and sizes, and testing of 3D printing filaments of plastic waste which was applied to the 3D printing machine. The result showed that 190°C was the greater temperature to heat the barrel, machine capacity of each plastic waste category, and the characteristic plastic waste was almost similar compared to market filament of polylactic acid (PLA) in terms of filament size and 3D printing machine parameter.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47055520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-06DOI: 10.46300/9104.2021.15.17
M. Shahnazari, F. Shali, A. Saberi, M. Moosavi
Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.
{"title":"A New Hybrid Method for Solving Inverse Heat Conduction Problems","authors":"M. Shahnazari, F. Shali, A. Saberi, M. Moosavi","doi":"10.46300/9104.2021.15.17","DOIUrl":"https://doi.org/10.46300/9104.2021.15.17","url":null,"abstract":"Solving the inverse problems, especially in the field of heat transfer, is one of the challenges of engineering due to its importance in industrial applications. It is well-known that inverse heat conduction problems (IHCPs) are severely ill-posed, which means that small disturbances in the input may cause extremely large errors in the solution. This paper introduces an accurate method for solving inverse problems by combining Tikhonov's regularization and the genetic algorithm. Finding the regularization parameter as the decisive parameter is modelled by this method, a few sample problems were solved to investigate the efficiency and accuracy of the proposed method. A linear sum of fundamental solutions with unknown constant coefficients assumed as an approximated solution to the sample IHCP problem and collocation method is used to minimize residues in the collocation points. In this contribution, we use Morozov's discrepancy principle and Quasi-Optimality criterion for defining the objective function, which must be minimized to yield the value of the optimum regularization parameter.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47521008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-03DOI: 10.46300/9104.2021.15.16
I. Andrianov
The study is devoted to optimizing the volume of stamping tools used in pressure processing processes. The relevance of the research is due to the active development of additive technologies and the possibility of producing stamping tools from plastic of optimal shape, which has an important practical significance in the manufacture of thin-walled products in the aviation and automotive industries. The purpose of the study was to carry out a mathematical formulation of the problem of topological optimization of a forming die made of a polymer material with restrictions on fatigue durability and minimum volume. The task of topological optimization was to maximize the stiffness of the die under multicyclic loading. The vector description of topological optimization was based on the finite element approach. The optimization model was built on the basis of the solid isotropic material penalization method with the introduction of additional restrictions in the model of searching for pseudo-densities of the material, taking into account the duration of the force action on the stamp under multicyclic loading. In view of the nonlinearity of the resulting system of equations, the solution of the conditional optimization problem is proposed to be carried out by constructing the Lagrange objective function and using the Lagrange multiplier method. The result of the study is the proposed approach to the topological optimization of the stamp, taking into account the multicyclic loading and restrictions on the desired volume.
{"title":"Modification of the Stamp Topological Optimization Taking into Account Cyclic Fatigue based on the Finite Element Approach","authors":"I. Andrianov","doi":"10.46300/9104.2021.15.16","DOIUrl":"https://doi.org/10.46300/9104.2021.15.16","url":null,"abstract":"The study is devoted to optimizing the volume of stamping tools used in pressure processing processes. The relevance of the research is due to the active development of additive technologies and the possibility of producing stamping tools from plastic of optimal shape, which has an important practical significance in the manufacture of thin-walled products in the aviation and automotive industries. The purpose of the study was to carry out a mathematical formulation of the problem of topological optimization of a forming die made of a polymer material with restrictions on fatigue durability and minimum volume. The task of topological optimization was to maximize the stiffness of the die under multicyclic loading. The vector description of topological optimization was based on the finite element approach. The optimization model was built on the basis of the solid isotropic material penalization method with the introduction of additional restrictions in the model of searching for pseudo-densities of the material, taking into account the duration of the force action on the stamp under multicyclic loading. In view of the nonlinearity of the resulting system of equations, the solution of the conditional optimization problem is proposed to be carried out by constructing the Lagrange objective function and using the Lagrange multiplier method. The result of the study is the proposed approach to the topological optimization of the stamp, taking into account the multicyclic loading and restrictions on the desired volume.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44121327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01DOI: 10.46300/9104.2021.15.15
M. A. Zaytoon, S. Dajani, M. Hamdan
Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work
{"title":"Effects of the Porous Microstructure on the Drag Coefficient in Flow of a Fluid with Pressure-Dependent Viscosity","authors":"M. A. Zaytoon, S. Dajani, M. Hamdan","doi":"10.46300/9104.2021.15.15","DOIUrl":"https://doi.org/10.46300/9104.2021.15.15","url":null,"abstract":"Equations governing the flow of a fluid with pressure-dependent viscosity through an isotropic porous structure are derived using the method of intrinsic volume averaging. Viscosity of the fluid is assumed to be a variable function of pressure, and the effects of the porous microstructure are modelled and included in the pressure-dependent drag coefficient. Five friction factors relating to five different microstructures are used in this work","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46950303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}