首页 > 最新文献

Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X最新文献

英文 中文
Multi-beam local oscillator for a 100-pixel heterodyne array receiver at THz 太赫兹波段100像素外差阵列接收机的多波束本振
Y. Gan, B. Mirzaei, Jose R. G. Silva, A. Khalatpour, Q. Hu, C. Groppi, J. Siles, F. V. D. Tak, Jiansong Gao
Generating multiple local oscillator beams is one challenge to develop large heterodyne receiver arrays (~100 pixels), which allow astronomical instrumentations mapping more area within limited space mission lifetime. Here, We combine a reflective Fourier grating with an unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL) to generate 81 beams at 3.86 THz. We have measured the beam pattern of the diffracted 81 beams, which agrees well with a simulated result from COMSOL Multiphysics with respect to the angular distribution and power distribution among the 81 beams. The diffraction efficiency of the Fourier grating is derived to be 94±3%, which is very close to the simulated result of 97%. For an array of equal superconducting hot electron bolometer mixers, 64 out of 81 beams can pump the HEB mixers with similar power, resulting in receiver sensitivities within 10%. Such a combination of a Fourier grating and a QCL can create an LO with 100 beams or more, enabling a new generation of large heterodyne arrays for astronomical instrumentation. This paper is essentially a copy of our paper in Optics Express.
产生多个本振波束是开发大型外差接收器阵列(~100像素)的一个挑战,该阵列允许天文仪器在有限的空间任务寿命内绘制更多区域。在这里,我们将反射傅立叶光栅与单向天线耦合三阶分布反馈(DFB)量子级联激光器(QCL)结合在一起,产生了81束3.86太赫兹的光束。我们测量了81束衍射后的光束模式,在81束的角分布和功率分布方面与COMSOL Multiphysics模拟结果吻合得很好。傅里叶光栅的衍射效率为94±3%,与模拟结果97%非常接近。对于一组等量超导热电子测热计混合器,81束中有64束可以以相似的功率泵送HEB混合器,从而使接收器灵敏度在10%以内。这种傅立叶光栅和QCL的组合可以创建一个具有100束或更多光束的LO,为天文仪器提供新一代大型外差阵列。这篇论文基本上是我们在《光学快报》上的论文的副本。
{"title":"Multi-beam local oscillator for a 100-pixel heterodyne array receiver at THz","authors":"Y. Gan, B. Mirzaei, Jose R. G. Silva, A. Khalatpour, Q. Hu, C. Groppi, J. Siles, F. V. D. Tak, Jiansong Gao","doi":"10.1117/12.2560939","DOIUrl":"https://doi.org/10.1117/12.2560939","url":null,"abstract":"Generating multiple local oscillator beams is one challenge to develop large heterodyne receiver arrays (~100 pixels), which allow astronomical instrumentations mapping more area within limited space mission lifetime. Here, We combine a reflective Fourier grating with an unidirectional antenna coupled 3rd-order distributed feedback (DFB) quantum cascade laser (QCL) to generate 81 beams at 3.86 THz. We have measured the beam pattern of the diffracted 81 beams, which agrees well with a simulated result from COMSOL Multiphysics with respect to the angular distribution and power distribution among the 81 beams. The diffraction efficiency of the Fourier grating is derived to be 94±3%, which is very close to the simulated result of 97%. For an array of equal superconducting hot electron bolometer mixers, 64 out of 81 beams can pump the HEB mixers with similar power, resulting in receiver sensitivities within 10%. Such a combination of a Fourier grating and a QCL can create an LO with 100 beams or more, enabling a new generation of large heterodyne arrays for astronomical instrumentation. This paper is essentially a copy of our paper in Optics Express.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129310724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal mesh IR filter for wSMA 用于wSMA的金属网红外滤波器
Chao-Te Li, C. Tong, Ming-jye Wang, Tse-Jun Chen, Yen-Pin Chang, S. Yen, Jen-Chieh Cheng, Wei-Chun Lu, Yen-Ru Huang
Since the start of full science operations from 2004, the Submillimeter Array has been implementing plans to expand IF bandwidths and upgrade receivers and cryostats. Metal mesh low-pass filters were designed to block infrared (IR) radiation to reduce the thermal load on the cryostats. Filters were fabricated on a quartz wafer through photolithography and coated with anti-reflection (AR) material. The filters were tested from 200 to 400 GHz to verify their passband performances. The measurement results were found to be in good agreement with EM simulation results. They were tested in the far-infrared (FIR) frequency range to verify out-of-band rejection. The IR reflectivity was found to be approximately 70%, which corresponded to the percentage of the area blocked by metal.
自2004年开始全面科学运作以来,亚毫米波阵列一直在实施扩大中频带宽和升级接收器和低温恒温器的计划。设计了金属网低通滤波器来阻挡红外辐射,以减少低温恒温器的热负荷。采用光刻技术在石英晶片上制备滤光片,并涂覆增透材料。在200至400 GHz频段对滤波器进行了测试,以验证其通带性能。测量结果与仿真结果吻合较好。它们在远红外(FIR)频率范围内进行了测试,以验证带外抑制。红外反射率约为70%,这与金属阻挡面积的百分比相对应。
{"title":"Metal mesh IR filter for wSMA","authors":"Chao-Te Li, C. Tong, Ming-jye Wang, Tse-Jun Chen, Yen-Pin Chang, S. Yen, Jen-Chieh Cheng, Wei-Chun Lu, Yen-Ru Huang","doi":"10.1117/12.2561174","DOIUrl":"https://doi.org/10.1117/12.2561174","url":null,"abstract":"Since the start of full science operations from 2004, the Submillimeter Array has been implementing plans to expand IF bandwidths and upgrade receivers and cryostats. Metal mesh low-pass filters were designed to block infrared (IR) radiation to reduce the thermal load on the cryostats. Filters were fabricated on a quartz wafer through photolithography and coated with anti-reflection (AR) material. The filters were tested from 200 to 400 GHz to verify their passband performances. The measurement results were found to be in good agreement with EM simulation results. They were tested in the far-infrared (FIR) frequency range to verify out-of-band rejection. The IR reflectivity was found to be approximately 70%, which corresponded to the percentage of the area blocked by metal.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123054468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of the multi-band simultaneous observation system of the Nobeyama 45-m Telescope in HINOTORI (Hybrid Installation project in NObeyama, Triple-band ORIented) HINOTORI Nobeyama 45 m望远镜多波段同步观测系统研制(Nobeyama混合安装项目,三波段定向)
N. Okada, Takeru Matsumoto, Hiroshi Kondo, T. Takashima, S. Masui, Shota Ueda, A. Nishimura, T. Manabe, T. Onishi, H. Ogawa, Ryoko Amari, Toshihisa Tsutsumi, T. Aoki, S. Sawada-Satoh, K. Niinuma, K. Fujisawa, K. Kimura, T. Minamidani, C. Miyazawa, H. Kaneko, K. Torii, Shigeru Takahashi, Y. Miyamoto, K. Miyazawa, T. Oyama, S. Kameno, H. Imai
{"title":"Development of the multi-band simultaneous observation system of the Nobeyama 45-m Telescope in HINOTORI (Hybrid Installation project in NObeyama, Triple-band ORIented)","authors":"N. Okada, Takeru Matsumoto, Hiroshi Kondo, T. Takashima, S. Masui, Shota Ueda, A. Nishimura, T. Manabe, T. Onishi, H. Ogawa, Ryoko Amari, Toshihisa Tsutsumi, T. Aoki, S. Sawada-Satoh, K. Niinuma, K. Fujisawa, K. Kimura, T. Minamidani, C. Miyazawa, H. Kaneko, K. Torii, Shigeru Takahashi, Y. Miyamoto, K. Miyazawa, T. Oyama, S. Kameno, H. Imai","doi":"10.1117/12.2562137","DOIUrl":"https://doi.org/10.1117/12.2562137","url":null,"abstract":"","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121924295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Breadboard model of polarization modulator unit based on a continuously rotating half-wave plate for the low-frequency telescope of the LiteBIRD space mission 基于连续旋转半波片的LiteBIRD低频望远镜偏振调制器面包板模型
Yukiko Sakurai, T. Matsumura, N. Katayama, K. Komatsu, R. Takaku, S. Sugiyama, Y. Nomura, T. Toda, Tommaso Ghigna, T. Iida, H. Sugai, H. Imada, M. Hazumi, H. Ishino, H. Ohsaki, Y. Terao, H. Enokida, Y. Ishida, Yosuke Iwata, Doa Jamil, K. Konishi, H. Sakurai, J. Yumoto, M. Kuwata-Gonokami, A. Kusaka, C. Hill
We present a breadboard model development status of the polarization modulator unit (PMU) for a low-frequency telescope (LFT) of the LiteBIRD space mission. LiteBIRD is a next-generation cosmic microwave background polarization satellite to measure the primordial B-mode with the science goal of σr < 0.001. The baseline design of LiteBIRD consists of reflective low-frequency and refractive medium-and-high-frequency telescopes. Each telescope employs the PMU based on a continuous rotating half-wave plate (HWP) at the aperture. The PMU is a critical instrument for the LiteBIRD to achieve the science goal because it significantly suppresses 1/f noise and mitigates systematic uncertainties. The LiteBIRD LFT PMU consists of a broadband achromatic HWP and a cryogenic rotation mechanism. In this presentation, we discuss requirements, design and systematic studies of the PMU, and we report the development status of the broadband HWP and the space-compatible cryogenic rotation mechanism.
介绍了LiteBIRD低频望远镜偏振调制器单元(PMU)的面包板模型研制现状。LiteBIRD是测量原始b模的下一代宇宙微波背景极化卫星,科学目标为σr < 0.001。LiteBIRD的基线设计由反射低频和折射中高频望远镜组成。每台望远镜都采用基于孔径处连续旋转半波片(HWP)的PMU。PMU是LiteBIRD实现科学目标的关键仪器,因为它显著地抑制了1/f噪声并减轻了系统的不确定性。LiteBIRD LFT PMU由宽带消色差HWP和低温旋转机制组成。在本文中,我们讨论了PMU的要求、设计和系统研究,并报告了宽带HWP和空间兼容低温旋转机制的发展现状。
{"title":"Breadboard model of polarization modulator unit based on a continuously rotating half-wave plate for the low-frequency telescope of the LiteBIRD space mission","authors":"Yukiko Sakurai, T. Matsumura, N. Katayama, K. Komatsu, R. Takaku, S. Sugiyama, Y. Nomura, T. Toda, Tommaso Ghigna, T. Iida, H. Sugai, H. Imada, M. Hazumi, H. Ishino, H. Ohsaki, Y. Terao, H. Enokida, Y. Ishida, Yosuke Iwata, Doa Jamil, K. Konishi, H. Sakurai, J. Yumoto, M. Kuwata-Gonokami, A. Kusaka, C. Hill","doi":"10.1117/12.2560289","DOIUrl":"https://doi.org/10.1117/12.2560289","url":null,"abstract":"We present a breadboard model development status of the polarization modulator unit (PMU) for a low-frequency telescope (LFT) of the LiteBIRD space mission. LiteBIRD is a next-generation cosmic microwave background polarization satellite to measure the primordial B-mode with the science goal of σr < 0.001. The baseline design of LiteBIRD consists of reflective low-frequency and refractive medium-and-high-frequency telescopes. Each telescope employs the PMU based on a continuous rotating half-wave plate (HWP) at the aperture. The PMU is a critical instrument for the LiteBIRD to achieve the science goal because it significantly suppresses 1/f noise and mitigates systematic uncertainties. The LiteBIRD LFT PMU consists of a broadband achromatic HWP and a cryogenic rotation mechanism. In this presentation, we discuss requirements, design and systematic studies of the PMU, and we report the development status of the broadband HWP and the space-compatible cryogenic rotation mechanism.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115682823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
An optical test facility for the B-BOP bolometers of the SPICA mission SPICA任务B-BOP辐射计的光学测试设备
C. Gennet, D. Desforge, D. Dubreuil, J. Martignac, X. Navick, Albrecht Pöglitsh, V. Révéret, L. Rodriguez
{"title":"An optical test facility for the B-BOP bolometers of the SPICA mission","authors":"C. Gennet, D. Desforge, D. Dubreuil, J. Martignac, X. Navick, Albrecht Pöglitsh, V. Révéret, L. Rodriguez","doi":"10.1117/12.2561330","DOIUrl":"https://doi.org/10.1117/12.2561330","url":null,"abstract":"","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121503535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018 2016 - 2018年BICEP3和Keck CMB数据的温度-极化泄漏分析
T. S. Germaine, P. Ade, Z. Ahmed, M. Amiri, D. Barkats, R. Thakur, C. Bischoff, J. Bock, J. Bock, H. Boenish, E. Bullock, V. Buza, J. Cheshire, J. Connors, J. Cornelison, M. Crumrine, A. Cukierman, E. Denison, M. Dierickx, L. Duband, M. Eiben, S. Fatigoni, J. Filippini, S. Fliescher, N. Goeckner-wald, D. Goldfinger, J. Grayson, P. Grimes, G. Hall, M. Halpern, S. Harrison, S. Henderson, S. Hildebrandt, S. Hildebrandt, G. Hilton, J. Hubmayr, H. Hui, K. Irwin, K. Irwin, J. Kang, J. Kang, K. Karkare, E. Karpel, S. Kefeli, S. Kernasovskiy, J. Kovac, C. Kuo, K. Lau, E. Leitch, K. Megerian, L. Minutolo, L. Moncelsi, Y. Nakato, T. Namikawa, H. Nguyen, H. Nguyen, R. O’Brient, R. O’Brient, R. W. Ogburn, S. Palladino, N. Precup, T. Prouvé, C. Pryke, B. Racine, C. Reintsema, S. Richter, A. Schillaci, B. Schmitt, R. Schwartz, C. Sheehy, A. Soliman, B. Steinbach, R. Sudiwala, G. Teply, K. Thompson, J. Tolan, C. Tucker, A. Turner, C. Umilta, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, C. L. Wong, W. L. Wu, H
The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of "beam map simulations," which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.
Bicep/Keck阵列实验是一系列小孔径折射望远镜,从南极观测度尺度的宇宙微波背景偏振,以寻找原始b模特征。作为一对差分实验,必须控制的一个重要系统是同置的正交极化探测器之间的差分光束响应。我们使用高保真的光束响应原位测量来估计我们最新数据中的温度-偏振(T→P)泄漏,包括2016年至2018年的观测数据。这包括三年的Bicep3在95千兆赫的观测,以及来自凯克阵列的多频数据。在这里,我们展示了这些接收器的带平均远场波束图、差分波束失配和剩余波束功率(通过去投影滤除领先的差模后)。我们展示了“波束图模拟”的初步结果,它使用这些波束图来观察模拟温度(无Q/U)天空,以估计我们实际数据中的T→P泄漏。
{"title":"Analysis of Temperature-to-Polarization Leakage in BICEP3 and Keck CMB Data from 2016 to 2018","authors":"T. S. Germaine, P. Ade, Z. Ahmed, M. Amiri, D. Barkats, R. Thakur, C. Bischoff, J. Bock, J. Bock, H. Boenish, E. Bullock, V. Buza, J. Cheshire, J. Connors, J. Cornelison, M. Crumrine, A. Cukierman, E. Denison, M. Dierickx, L. Duband, M. Eiben, S. Fatigoni, J. Filippini, S. Fliescher, N. Goeckner-wald, D. Goldfinger, J. Grayson, P. Grimes, G. Hall, M. Halpern, S. Harrison, S. Henderson, S. Hildebrandt, S. Hildebrandt, G. Hilton, J. Hubmayr, H. Hui, K. Irwin, K. Irwin, J. Kang, J. Kang, K. Karkare, E. Karpel, S. Kefeli, S. Kernasovskiy, J. Kovac, C. Kuo, K. Lau, E. Leitch, K. Megerian, L. Minutolo, L. Moncelsi, Y. Nakato, T. Namikawa, H. Nguyen, H. Nguyen, R. O’Brient, R. O’Brient, R. W. Ogburn, S. Palladino, N. Precup, T. Prouvé, C. Pryke, B. Racine, C. Reintsema, S. Richter, A. Schillaci, B. Schmitt, R. Schwartz, C. Sheehy, A. Soliman, B. Steinbach, R. Sudiwala, G. Teply, K. Thompson, J. Tolan, C. Tucker, A. Turner, C. Umilta, A. Vieregg, A. Wandui, A. Weber, D. Wiebe, J. Willmert, C. L. Wong, W. L. Wu, H","doi":"10.1117/12.2562729","DOIUrl":"https://doi.org/10.1117/12.2562729","url":null,"abstract":"The Bicep/Keck Array experiment is a series of small-aperture refracting telescopes observing degree-scale Cosmic Microwave Background polarization from the South Pole in search of a primordial B-mode signature. As a pair differencing experiment, an important systematic that must be controlled is the differential beam response between the co-located, orthogonally polarized detectors. We use high-fidelity, in-situ measurements of the beam response to estimate the temperature-to-polarization (T → P) leakage in our latest data including observations from 2016 through 2018. This includes three years of Bicep3 observing at 95 GHz, and multifrequency data from Keck Array. Here we present band-averaged far-field beam maps, differential beam mismatch, and residual beam power (after filtering out the leading difference modes via deprojection) for these receivers. We show preliminary results of \"beam map simulations,\" which use these beam maps to observe a simulated temperature (no Q/U) sky to estimate T → P leakage in our real data.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131209000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Technologies for space Terahertz intensity interferometry 空间太赫兹强度干涉测量技术
H. Matsuo, H. Ezawa, H. Kiuchi, M. Honma, M. Ukibe, G. Fujii, Y. Murata, M. Hattori
{"title":"Technologies for space Terahertz intensity interferometry","authors":"H. Matsuo, H. Ezawa, H. Kiuchi, M. Honma, M. Ukibe, G. Fujii, Y. Murata, M. Hattori","doi":"10.1117/12.2562333","DOIUrl":"https://doi.org/10.1117/12.2562333","url":null,"abstract":"","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132431028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential for a K-band receiver on the Large Millimeter Telescope 在大型毫米望远镜上安装k波段接收器的可能性
S. Kurtz, T. Stander, D. Villiers, William Cerfonteyn, A. D. Witt, D. Ferrusca, D. Hiriart, D. Hughes, C. Jacobs, L. Loinard, Fanie van den Heever, M. Velázquez
The 50-meter Large Millimeter Telescope (LMT) operating on the Sierra Negra in Mexico is the largest single- dish millimeter-wave telescope in the world. Although designed to work in the 3 mm and 1 mm bands, there is significant potential for LMT observations at centimeter wavelengths. Here, we summarize the scientific case and operational arguments for a K-band receiver system on the LMT, describe several of the unique technical challenges that the proposed installation would entail, and mention some possible solutions to these challenges.
位于墨西哥塞拉内格拉的50米大型毫米波望远镜(LMT)是世界上最大的单碟毫米波望远镜。虽然设计工作在3毫米和1毫米波段,有显著潜力的LMT观测在厘米波长。在这里,我们总结了在LMT上的k波段接收器系统的科学案例和操作参数,描述了拟议安装将带来的几个独特的技术挑战,并提到了一些可能的解决方案。
{"title":"The potential for a K-band receiver on the Large Millimeter Telescope","authors":"S. Kurtz, T. Stander, D. Villiers, William Cerfonteyn, A. D. Witt, D. Ferrusca, D. Hiriart, D. Hughes, C. Jacobs, L. Loinard, Fanie van den Heever, M. Velázquez","doi":"10.1117/12.2563132","DOIUrl":"https://doi.org/10.1117/12.2563132","url":null,"abstract":"The 50-meter Large Millimeter Telescope (LMT) operating on the Sierra Negra in Mexico is the largest single- dish millimeter-wave telescope in the world. Although designed to work in the 3 mm and 1 mm bands, there is significant potential for LMT observations at centimeter wavelengths. Here, we summarize the scientific case and operational arguments for a K-band receiver system on the LMT, describe several of the unique technical challenges that the proposed installation would entail, and mention some possible solutions to these challenges.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133642547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Upgrade of an ALMA Band 10 prototype receiver for ASTE radio telescope
Tetsuya Ito, Y. Fujii, M. Inata, T. Kamazaki, S. Sakamoto, S. Asayama
A new 790 – 940 GHz heterodyne receiver, ASTE Band 10, was installed in October 2019 on ASTE (Atacama Submillimeter Telescope Experiment), a 10 m submillimeter telescope near of the ALMA site in Chile. An ALMA Band 10 prototype receiver was upgraded with SIS mixers employing high-Jc junctions. The receiver noise temperature (TDSB) measured in the laboratory is between 175 K and 344 K. The achieved system noise temperature on ASTE toward the zenith was 2400 K (PWV <1.0 mm). Their Allan variances were less than 2.0 x 10-6 for timescales in the range of 0.05 sec < T <100 sec.
2019年10月,一个新的790 - 940 GHz外差接收器,ASTE波段10,安装在智利ALMA站点附近的10米亚毫米望远镜ASTE(阿塔卡马亚毫米望远镜实验)上。ALMA Band 10原型接收机升级为采用高jc结的SIS混频器。实验室测得的接收机噪声温度(TDSB)在175 ~ 344 K之间。在朝向天顶方向的ASTE上获得的系统噪声温度为2400 K (PWV <1.0 mm)。在0.05秒< T <100秒的时间尺度上,其Allan方差均小于2.0 × 10-6。
{"title":"Upgrade of an ALMA Band 10 prototype receiver for ASTE radio telescope","authors":"Tetsuya Ito, Y. Fujii, M. Inata, T. Kamazaki, S. Sakamoto, S. Asayama","doi":"10.1117/12.2561076","DOIUrl":"https://doi.org/10.1117/12.2561076","url":null,"abstract":"A new 790 – 940 GHz heterodyne receiver, ASTE Band 10, was installed in October 2019 on ASTE (Atacama Submillimeter Telescope Experiment), a 10 m submillimeter telescope near of the ALMA site in Chile. An ALMA Band 10 prototype receiver was upgraded with SIS mixers employing high-Jc junctions. The receiver noise temperature (TDSB) measured in the laboratory is between 175 K and 344 K. The achieved system noise temperature on ASTE toward the zenith was 2400 K (PWV <1.0 mm). Their Allan variances were less than 2.0 x 10-6 for timescales in the range of 0.05 sec < T <100 sec.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125307545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes 西蒙斯天文台大口径望远镜光学管的集成和测试项目
K. Harrington, C. Sierra, G. Chesmore, Shreya Sutariya, Aamir Ali, Steve K. Choi, N. Cothard, S. Dicker, N. Galitzki, S. Ho, A. Kofman, B. Koopman, J. Lashner, J. McMahon, M. Niemack, J. Orlowski-Scherer, J. Seibert, M. Silva-Feaver, E. Vavagiakis, Zhilei Xu, N. Zhu
The Simons Observatory (SO) will be a CMB survey experiment with three small-aperture telescopes and one large-aperture telescope (the LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 TES bolometers in six spectral bands centered between 27 and 280 GHz. The 6 m LAT, targeting the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. The scientific objectives of the SO project requires these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the LATR optics tubes being carried out to verify the design and assembly of the tubes before deployment. The program includes a quick turn-around single tube test cryostat. We discuss the optical design specifications the tubes for deployment and the suite of optical test equipment prepared for these measurements.
西蒙斯天文台(SO)将是一个CMB调查实验,它将使用三个小口径望远镜和一个大口径望远镜(LAT),从智利的阿塔卡马沙漠观测。SO将在以27 GHz至280 GHz为中心的6个频谱带中部署超过6万个TES辐射热计。6米的LAT,目标是CMB较小的角度尺度,利用一个低温接收器(LATR),设计容纳多达13个单独的光学管。SO项目的科学目标要求这些光学管在保持对系统效果的精细控制的同时实现高通量光学性能。我们描述了正在进行的LATR光学管的集成和测试程序,以验证部署前管的设计和组装。该程序包括一个快速转弯单管低温恒温器测试。我们讨论了光学设计规范,用于部署的管和为这些测量准备的光学测试设备套件。
{"title":"The integration and testing program for the Simons Observatory Large Aperture Telescope optics tubes","authors":"K. Harrington, C. Sierra, G. Chesmore, Shreya Sutariya, Aamir Ali, Steve K. Choi, N. Cothard, S. Dicker, N. Galitzki, S. Ho, A. Kofman, B. Koopman, J. Lashner, J. McMahon, M. Niemack, J. Orlowski-Scherer, J. Seibert, M. Silva-Feaver, E. Vavagiakis, Zhilei Xu, N. Zhu","doi":"10.1117/12.2562647","DOIUrl":"https://doi.org/10.1117/12.2562647","url":null,"abstract":"The Simons Observatory (SO) will be a CMB survey experiment with three small-aperture telescopes and one large-aperture telescope (the LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 TES bolometers in six spectral bands centered between 27 and 280 GHz. The 6 m LAT, targeting the smaller angular scales of the CMB, utilizes a cryogenic receiver (LATR) designed to house up to 13 individual optics tubes. The scientific objectives of the SO project requires these optics tubes to achieve high-throughput optical performance while maintaining exquisite control of systematic effects. We describe the integration and testing program for the LATR optics tubes being carried out to verify the design and assembly of the tubes before deployment. The program includes a quick turn-around single tube test cryostat. We discuss the optical design specifications the tubes for deployment and the suite of optical test equipment prepared for these measurements.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116639591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1