Dr. Karel Rössler, Dr. Gunilla Franzén, Professor Robert Galler, Dipl.-Ing. Urs Grunicke, Dr. Giorgio Höfer-Öllinger, Dr. Johannes Jäger, Dr. Andrès Marulanda Escobar
Tunnel excavation failures remain a significant challenge in geotechnical engineering, despite advancements in tunneling processes and risk management frameworks. This article explores the recurring mechanisms of tunnel failures, examines the limitations of current tunneling practices, and presents a methodology to mitigate failures. Drawing on four case histories, the analysis underscores the critical influence of human factors, the incomplete handling of uncertainty, and the limited predictive capacity of existing methods. The article concludes with recommendations to improve robustness in design by integrating ground behavior classification with observed support performance and aligning design and risk analysis with failure mechanisms.
{"title":"Understanding tunnel failures during excavation: Causes, limitations, and recommendations","authors":"Dr. Karel Rössler, Dr. Gunilla Franzén, Professor Robert Galler, Dipl.-Ing. Urs Grunicke, Dr. Giorgio Höfer-Öllinger, Dr. Johannes Jäger, Dr. Andrès Marulanda Escobar","doi":"10.1002/geot.70033","DOIUrl":"https://doi.org/10.1002/geot.70033","url":null,"abstract":"<p>Tunnel excavation failures remain a significant challenge in geotechnical engineering, despite advancements in tunneling processes and risk management frameworks. This article explores the recurring mechanisms of tunnel failures, examines the limitations of current tunneling practices, and presents a methodology to mitigate failures. Drawing on four case histories, the analysis underscores the critical influence of human factors, the incomplete handling of uncertainty, and the limited predictive capacity of existing methods. The article concludes with recommendations to improve robustness in design by integrating ground behavior classification with observed support performance and aligning design and risk analysis with failure mechanisms.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"599-607"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Karavanke tunnel is a double tube double lane motorway tunnel connecting Slovenia and Austria through the Karavanke massif with overburden up to 1100 m. On the Slovenian side, the tunnel runs through very diverse ground conditions, considering a 1 km long section in soft and highly deformable Permo-Carboniferous claystones, siltstones, and sandstones (PC) under high overburden as the major challenge. Construction of both tunnel tubes in PC, the Western tube in 80 s and the Eastern tube recently, was characterized with large deformations up to 1.6 m and heavy damage of the primary lining requiring an extensive remediation of the initially installed lining, sometimes even several times. This article focuses solely on the Permo-Carboniferous section and presents the construction of the Western tube, application of the lessons learned into the design of the Eastern tube, performance of the designed primary lining in the Eastern tube, development and application of an alternative excavation and support concept to cope with the extreme deformations, and remediation of the primary lining using solely fiber reinforced shotcrete (fibercrete).
Karawankentunnel: Erfahrungen beim Vortrieb in extrem drückendem Gebirge
Der Karawankentunnel ist ein zweiröhriger, zweispuriger Autobahntunnel, der Slowenien und Österreich durch das Karawankenmassiv verbindet und stellenweise eine Überdeckung von bis zu 1 100 m aufweist. Auf der slowenischen Seite verläuft der Tunnel durch sehr unterschiedliche Gebirgsverhältnisse; als größte Herausforderung gilt ein etwa 1 km langer Abschnitt in weichen und hoch verformbaren permokarbonischen Ton-, Silt- und Sandsteinen (PC) unter hoher Überdeckung. Der Vortrieb beider Tunnelröhren in diesem PC-Abschnitt – die Weströhre in den 1980er-Jahren und die Oströhre in jüngerer Zeit – war durch große Verformungen von bis zu 1,6 m und erhebliche Schäden an der Primärsicherung gekennzeichnet, die eine umfangreiche Sanierung der ursprünglich hergestellten Sicherung erforderlich machten, teilweise sogar mehrfach. Dieser Beitrag konzentriert sich ausschließlich auf den PC-Abschnitt und beschreibt den Bau der Weströhre, die Umsetzung der gewonnenen Erkenntnisse in die Planung der Oströhre, die Leistungsfähigkeit der bemessenen Primärsicherung in der Oströhre, die Entwicklung und Anwendung eines alternativen Ausbruch- und Sicherungskonzepts zur Beherrschung des druckhaften Gebirges sowie die Sanierung der Primärsicherung ausschließlich unter Verwendung von faserbewehrtem Spritzbeton.
卡拉万克隧道是一条双管双车道高速公路隧道,连接斯洛文尼亚和奥地利,穿过卡拉万克地块,覆盖层长达1100米。在斯洛文尼亚一侧,隧道穿过非常多样化的地面条件,考虑到1公里长的软且高度变形的二叠纪石炭系粘土岩,粉砂岩和砂岩(PC)在高覆盖层下是主要挑战。80年代的西部隧道和最近的东部隧道的施工特点是变形大,可达1.6 m,初级衬砌严重损坏,需要对最初安装的衬砌进行大量修复,有时甚至需要多次修复。本文仅以二叠纪-石炭系剖面为重点,介绍了西管的施工、东管设计中经验教训的应用、东管设计的初级衬砌的性能、用于应对极端变形的替代开挖和支护概念的开发和应用,以及仅使用纤维增强喷射混凝土(fibercrete)修复初级衬砌。Karawankentunnel: Erfahrungen beim Vortrieb in extrem drckendem GebirgeDer Karawankentunnel ist ein zweiröhriger, zweispuriger高速公路隧道,der Slowenien und Österreich durch das Karawankenmassiv verindet and stellenweise eine Überdeckung von bis zu 1 100 m aufweist。Auf der slowenischen Seite verläuft der Tunnel durch sehr unterschiedliche Gebirgsverhältnisse;另外größte Herausforderung在weichen的Abschnitt上进行了1公里的研究,并在其他地方Überdeckung下进行了permokarbonischen Ton,淤泥和Sandsteinen (PC)的研究。Der Vortrieb beider Tunnelröhren in diesem PC-Abschnitt - die Weströhre in den 1980 - jahren und die Oströhre in jngerer Zeit - war durch große Verformungen von bis zu 1,6 m und erhehebliche Schäden and Der Primärsicherung gekennzeichnet, die eine umfangreiche Sanierung Der urspr nglich hergestellten Sicherung erforderlich machten, teilweise sohrfach。2 .请继续阅读以下内容:1 .请继续阅读阅读PC-Abschnitt并阅读阅读Bau - Weströhre; 2 .请阅读阅读Leistungsfähigkeit并阅读阅读Primärsicherung在阅读Oströhre; 3 .请阅读阅读以下内容:1 .请阅读阅读以下内容:1 .请阅读阅读以下内容:1 .请阅读阅读以下内容:1 .请阅读阅读以下内容:1 .请阅读阅读以下内容:
{"title":"Karavanke tunnel: Lessons learned during tunneling in extremely squeezing ground conditions","authors":"Jure Klopčič, Marko Žibert, Žan Turnšek","doi":"10.1002/geot.70028","DOIUrl":"https://doi.org/10.1002/geot.70028","url":null,"abstract":"<p>The Karavanke tunnel is a double tube double lane motorway tunnel connecting Slovenia and Austria through the Karavanke massif with overburden up to 1100 m. On the Slovenian side, the tunnel runs through very diverse ground conditions, considering a 1 km long section in soft and highly deformable Permo-Carboniferous claystones, siltstones, and sandstones (PC) under high overburden as the major challenge. Construction of both tunnel tubes in PC, the Western tube in 80 s and the Eastern tube recently, was characterized with large deformations up to 1.6 m and heavy damage of the primary lining requiring an extensive remediation of the initially installed lining, sometimes even several times. This article focuses solely on the Permo-Carboniferous section and presents the construction of the Western tube, application of the lessons learned into the design of the Eastern tube, performance of the designed primary lining in the Eastern tube, development and application of an alternative excavation and support concept to cope with the extreme deformations, and remediation of the primary lining using solely fiber reinforced shotcrete (fibercrete).</p><p><b>Karawankentunnel: Erfahrungen beim Vortrieb in extrem drückendem Gebirge</b></p><p>Der Karawankentunnel ist ein zweiröhriger, zweispuriger Autobahntunnel, der Slowenien und Österreich durch das Karawankenmassiv verbindet und stellenweise eine Überdeckung von bis zu 1 100 m aufweist. Auf der slowenischen Seite verläuft der Tunnel durch sehr unterschiedliche Gebirgsverhältnisse; als größte Herausforderung gilt ein etwa 1 km langer Abschnitt in weichen und hoch verformbaren permokarbonischen Ton-, Silt- und Sandsteinen (PC) unter hoher Überdeckung. Der Vortrieb beider Tunnelröhren in diesem PC-Abschnitt – die Weströhre in den 1980er-Jahren und die Oströhre in jüngerer Zeit – war durch große Verformungen von bis zu 1,6 m und erhebliche Schäden an der Primärsicherung gekennzeichnet, die eine umfangreiche Sanierung der ursprünglich hergestellten Sicherung erforderlich machten, teilweise sogar mehrfach. Dieser Beitrag konzentriert sich ausschließlich auf den PC-Abschnitt und beschreibt den Bau der Weströhre, die Umsetzung der gewonnenen Erkenntnisse in die Planung der Oströhre, die Leistungsfähigkeit der bemessenen Primärsicherung in der Oströhre, die Entwicklung und Anwendung eines alternativen Ausbruch- und Sicherungskonzepts zur Beherrschung des druckhaften Gebirges sowie die Sanierung der Primärsicherung ausschließlich unter Verwendung von faserbewehrtem Spritzbeton.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"608-616"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dipl.-Ing. Dr.techn. Manuel Entfellner, Dipl.-Ing. Dr.techn. Bernd A. Moritz, Em.Univ.-Prof. Dipl.-Ing. Dr.mont. Wulf Schubert
Brittle fault zones in Alpine regions are typically characterised by pronounced heterogeneity, resulting in highly variable stress distributions and displacement patterns within the surrounding rock mass and the underground structure. These conditions frequently lead to significant face instabilities, overbreaks and collapses during tunnelling. A systematic analysis of several Alpine tunnel projects has revealed a correlation between the occurrence of such incidents when the excavation approaches a relatively stiff rock mass section. Notably, the transition towards zones of increased rock mass stiffness can be predicted by observing the longitudinal displacements and/or displacement vector orientation. Findings of this research highlight that these displacement trends serve as potential early indicators of an impending stress-induced tunnel collapse and thus enable the proactive adjustment of excavation and support measures. Numerical simulations confirmed these findings. This approach helps to avoid dangerous, costly and time-consuming rehabilitation works and increases the safety of the crew.
Prognose von spannungsinduzierten Verbrüchen im Tunnelbau auf Basis von Verschiebungsmessungen
Spröde Störungszonen in den Alpen sind typischerweise durch eine ausgeprägte Heterogenität gekennzeichnet. Diese führt zu stark variierenden Spannungsverteilungen und Verschiebungen im umgebenden Gebirge sowie im unterirdisch zu errichtenden Bauwerk. Solche Bedingungen verursachen häufig Ortsbrustinstabilitäten, Überbrüche und Verbrüche während des Tunnelvortriebs. Die systematische Analyse mehrerer alpiner Tunnelprojekte zeigt einen Zusammenhang zwischen dem Auftreten solcher Vorfälle und dem Annähern des Vortriebs an Bereiche mit relativ steifem Gebirge. Solche Übergänge zu Bereichen erhöhter Gebirgssteifigkeit können durch die Beobachtung der Längsverschiebungen und/oder der Vektororientierung prognostiziert werden. Die Ergebnisse dieser Untersuchung zeigen, dass diese Trendlinien als potenzielle Indikatoren für einen bevorstehenden, spannungsbedingten Verbruch des Tunnels dienen und somit eine vorausschauende, proaktive Anpassung der Vortriebs- und Sicherungsmaßnahmen ermöglichen. Numerische Simulationen haben die Beobachtungen bestätigt. Dieser Ansatz trägt wesentlich dazu bei, gefährliche, kostenintensive und zeitaufwendige Sanierungsarbeiten zu vermeiden und erhöht zugleich die Sicherheit des Vortriebspersonals.
高寒地区脆性断裂带的典型特征是明显的非均质性,导致围岩和地下结构内部的应力分布和位移模式高度可变。这些条件经常导致掘进过程中严重的工作面不稳定、越界和坍塌。对几个高寒隧道工程的系统分析表明,当开挖接近相对坚硬的岩体断面时,此类事件的发生具有相关性。值得注意的是,可以通过观察纵向位移和/或位移矢量方向来预测向增加岩体刚度区域的过渡。本研究结果强调,这些位移趋势可以作为即将发生应力引起的隧道坍塌的潜在早期指标,从而可以主动调整开挖和支护措施。数值模拟证实了这些发现。这种方法有助于避免危险、昂贵和耗时的修复工作,并提高船员的安全。预测与预测:1 .预测与预测:1 .预测与预测:1 .预测与预测:1 .预测与预测:1 .预测与预测:1 .预测:1 .预测:1 .预测:1 .预测:1 .预测:1 .预测:1 .预测:1 .预测:[中文]:中文:中文:中文:中文:中文:中文:中文:德语:德语:德语:德语:德语:德语:德语:德语:德语:德语。Solche Bedingungen verursachen häufig Ortsbrustinstabilitäten, Überbrüche和verbr che während des Tunnelvortriebs。本文系统地分析了高海拔隧道工程的施工高度(Zusammenhang zwischen dem Auftreten solcher Vorfälle和dem Annähern)、Vortriebs和Bereiche的相对刚度。Solche Übergänge zu Bereichen erhöhter Gebirgssteifigkeit können durch die Beobachtung der Längsverschiebungen und/ der der Vektororientierung prognostizierwerden。研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现,在未来的研究中,研究发现。Numerische Simulationen haben die Beobachtungen bestätigt。Dieser Ansatz trägt wesentlich dazu bei, gefährliche, kostenintensive and zeitaufwendige sanierungsarbeen zu vermeiden and erhöht zuugleich die Sicherheit des vortriebspals。
{"title":"Prediction of stress-induced tunnel collapses based on displacement monitoring","authors":"Dipl.-Ing. Dr.techn. Manuel Entfellner, Dipl.-Ing. Dr.techn. Bernd A. Moritz, Em.Univ.-Prof. Dipl.-Ing. Dr.mont. Wulf Schubert","doi":"10.1002/geot.70029","DOIUrl":"https://doi.org/10.1002/geot.70029","url":null,"abstract":"<p>Brittle fault zones in Alpine regions are typically characterised by pronounced heterogeneity, resulting in highly variable stress distributions and displacement patterns within the surrounding rock mass and the underground structure. These conditions frequently lead to significant face instabilities, overbreaks and collapses during tunnelling. A systematic analysis of several Alpine tunnel projects has revealed a correlation between the occurrence of such incidents when the excavation approaches a relatively stiff rock mass section. Notably, the transition towards zones of increased rock mass stiffness can be predicted by observing the longitudinal displacements and/or displacement vector orientation. Findings of this research highlight that these displacement trends serve as potential early indicators of an impending stress-induced tunnel collapse and thus enable the proactive adjustment of excavation and support measures. Numerical simulations confirmed these findings. This approach helps to avoid dangerous, costly and time-consuming rehabilitation works and increases the safety of the crew.</p><p><b>Prognose von spannungsinduzierten Verbrüchen im Tunnelbau auf Basis von Verschiebungsmessungen</b></p><p>Spröde Störungszonen in den Alpen sind typischerweise durch eine ausgeprägte Heterogenität gekennzeichnet. Diese führt zu stark variierenden Spannungsverteilungen und Verschiebungen im umgebenden Gebirge sowie im unterirdisch zu errichtenden Bauwerk. Solche Bedingungen verursachen häufig Ortsbrustinstabilitäten, Überbrüche und Verbrüche während des Tunnelvortriebs. Die systematische Analyse mehrerer alpiner Tunnelprojekte zeigt einen Zusammenhang zwischen dem Auftreten solcher Vorfälle und dem Annähern des Vortriebs an Bereiche mit relativ steifem Gebirge. Solche Übergänge zu Bereichen erhöhter Gebirgssteifigkeit können durch die Beobachtung der Längsverschiebungen und/oder der Vektororientierung prognostiziert werden. Die Ergebnisse dieser Untersuchung zeigen, dass diese Trendlinien als potenzielle Indikatoren für einen bevorstehenden, spannungsbedingten Verbruch des Tunnels dienen und somit eine vorausschauende, proaktive Anpassung der Vortriebs- und Sicherungsmaßnahmen ermöglichen. Numerische Simulationen haben die Beobachtungen bestätigt. Dieser Ansatz trägt wesentlich dazu bei, gefährliche, kostenintensive und zeitaufwendige Sanierungsarbeiten zu vermeiden und erhöht zugleich die Sicherheit des Vortriebspersonals.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"634-642"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhalt: Geomechanics and Tunnelling 6/2025","authors":"","doi":"10.1002/geot.70055","DOIUrl":"https://doi.org/10.1002/geot.70055","url":null,"abstract":"","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/geot.70055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diary of Events: Geomechanics and Tunnelling 6/2025","authors":"","doi":"10.1002/geot.70053","DOIUrl":"https://doi.org/10.1002/geot.70053","url":null,"abstract":"","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"685-686"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Univ. Prof. Dipl.-Ing. Dr. mont Johann Golser, Dipl.-Ing. Dr.techn. Adrian Kattinger
On 21 October 1994, a collapse occurred in the Central Terminal Area (CTA) Tunnels of the Heathrow Express Project. The New Austrian Tunnelling Method (NATM) ‒ new in the UK ‒ was used in London Clay. The New Engineering Contract (NEC) and a self-certification system were chosen by the client British Airport Authority (BAA). This contractual setup was a major contributing factor to the incident. The article describes the circumstances and events which lead to the collapse, the trial in the Criminal Court and the lessons learned.
NATM Tunnel – Verbruch am Flughafen Heathrow
Am 21. Oktober 1994 ereignete sich in der zentralen Station des Heathrow Express Projekts ein Einsturz. Neu für das UK war der Bau nach der Neuen österreichischen Tunnelbaumethode. Der Bauherr, British Airport Authority, wählte als Vertragsform den New Engineering Contract (NEC) mit Selbstkontrolle durch die Baufirma. Dies trug wesentlich zum Verbrauchsereignis bei. Der Beitrag behandelt die Vorgänge, die zum Verbruch führten, das Gerichtsverfahren und Folgerungen.
{"title":"NATM tunnel collapse at Heathrow Airport","authors":"Univ. Prof. Dipl.-Ing. Dr. mont Johann Golser, Dipl.-Ing. Dr.techn. Adrian Kattinger","doi":"10.1002/geot.70031","DOIUrl":"https://doi.org/10.1002/geot.70031","url":null,"abstract":"<p>On 21 October 1994, a collapse occurred in the Central Terminal Area (CTA) Tunnels of the Heathrow Express Project. The New Austrian Tunnelling Method (NATM) ‒ new in the UK ‒ was used in London Clay. The New Engineering Contract (NEC) and a self-certification system were chosen by the client British Airport Authority (BAA). This contractual setup was a major contributing factor to the incident. The article describes the circumstances and events which lead to the collapse, the trial in the Criminal Court and the lessons learned.</p><p><b>NATM Tunnel – Verbruch am Flughafen Heathrow</b></p><p>Am 21. Oktober 1994 ereignete sich in der zentralen Station des Heathrow Express Projekts ein Einsturz. Neu für das UK war der Bau nach der Neuen österreichischen Tunnelbaumethode. Der Bauherr, British Airport Authority, wählte als Vertragsform den New Engineering Contract (NEC) mit Selbstkontrolle durch die Baufirma. Dies trug wesentlich zum Verbrauchsereignis bei. Der Beitrag behandelt die Vorgänge, die zum Verbruch führten, das Gerichtsverfahren und Folgerungen.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"629-633"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Installation of double corrosion protected DSI micropiles, more on Page 677. (Photo: Sandvik Ground Support)
安装双腐蚀保护DSI微桩,更多内容见677页。(图片来源:山特维克地面支援)
{"title":"Titelbild: Geomechanics and Tunnelling 6/2025","authors":"","doi":"10.1002/geot.70052","DOIUrl":"https://doi.org/10.1002/geot.70052","url":null,"abstract":"<p>Installation of double corrosion protected DSI micropiles, more on Page 677. (Photo: Sandvik Ground Support)</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/geot.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr.-Ing. Anna-Lena Hammer, Dr.-Ing. Carsten Peter, Dr. Carles Camós-Andreu, Peter Widera, Prof. Dr. Paul Gehwolf, Prof. Dr.-Ing. Frank Dehn, Zaki Kebdani
Fires in railway tunnels pose a considerable challenge to the integrity of the structures. The main objective of the research project "Structural fire protection in railway tunnels", funded by the German Centre for Railway Research (DZSF), is to experimentally investigate the fire behaviour of tunnel concrete under realistic conditions. The background to this includes new developments in concrete technology and the limited data available on the influence of these parameters on spalling. A cascading experimental approach was used for the analysis. The first step involved meso-scale screening tests for the three main tunnel construction methods – shotcrete, segmental and cut and cover construction. Practical concrete mixes were used, some of which were taken directly from construction sites. These fire tests served to narrow down the relevant factors at the material level. In a second step, large-scale fire tests were carried out on loaded test specimens to investigate the behaviour of the components. This article presents the test programme, the methodology used and initial observations on the behaviour of the concretes tested under fire conditions. The findings presented here represent an intermediate step and will be evaluated and developed in a further phase of the project.
{"title":"Fire behaviour of tunnel concrete – Results of a DZSF research project","authors":"Dr.-Ing. Anna-Lena Hammer, Dr.-Ing. Carsten Peter, Dr. Carles Camós-Andreu, Peter Widera, Prof. Dr. Paul Gehwolf, Prof. Dr.-Ing. Frank Dehn, Zaki Kebdani","doi":"10.1002/geot.70047","DOIUrl":"https://doi.org/10.1002/geot.70047","url":null,"abstract":"<p>Fires in railway tunnels pose a considerable challenge to the integrity of the structures. The main objective of the research project \"Structural fire protection in railway tunnels\", funded by the German Centre for Railway Research (DZSF), is to experimentally investigate the fire behaviour of tunnel concrete under realistic conditions. The background to this includes new developments in concrete technology and the limited data available on the influence of these parameters on spalling. A cascading experimental approach was used for the analysis. The first step involved meso-scale screening tests for the three main tunnel construction methods – shotcrete, segmental and cut and cover construction. Practical concrete mixes were used, some of which were taken directly from construction sites. These fire tests served to narrow down the relevant factors at the material level. In a second step, large-scale fire tests were carried out on loaded test specimens to investigate the behaviour of the components. This article presents the test programme, the methodology used and initial observations on the behaviour of the concretes tested under fire conditions. The findings presented here represent an intermediate step and will be evaluated and developed in a further phase of the project.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"663-675"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gunilla Franzén Ph.D., Karel Roessler Ph.D., Univ. Prof. Dipl.-Ing. Dr. mont. Robert Galler, Dipl.-Ing. Urs H. Grunicke, Dr. Giorgio Höfer-Öllinger, Dipl.-Ing. Dr. Johannes Jäger, Dr. Andrès Marulanda Escobar
Eurocodes provide a common approach for the design and verification of buildings and other civil engineering works. The suite of European standards is recommended as a reference for technical specifications of public contracts. However, there is no specific guidance addressing the challenges regarding tunnels and other underground structures. This article aims to address the challenges in developing Eurocodes to cover the design and verification of not only above- or near-surface applications but also tunnels and underground structures. The possibilities of utilising standards as a tool for risk mitigation and balancing the requirements of safety, serviceability, durability, robustness and sustainability will be explored.
{"title":"Challenges with standardising the design of tunnels and other underground structures – The first steps towards a potential addition to Eurocodes","authors":"Gunilla Franzén Ph.D., Karel Roessler Ph.D., Univ. Prof. Dipl.-Ing. Dr. mont. Robert Galler, Dipl.-Ing. Urs H. Grunicke, Dr. Giorgio Höfer-Öllinger, Dipl.-Ing. Dr. Johannes Jäger, Dr. Andrès Marulanda Escobar","doi":"10.1002/geot.70046","DOIUrl":"https://doi.org/10.1002/geot.70046","url":null,"abstract":"<p>Eurocodes provide a common approach for the design and verification of buildings and other civil engineering works. The suite of European standards is recommended as a reference for technical specifications of public contracts. However, there is no specific guidance addressing the challenges regarding tunnels and other underground structures. This article aims to address the challenges in developing Eurocodes to cover the design and verification of not only above- or near-surface applications but also tunnels and underground structures. The possibilities of utilising standards as a tool for risk mitigation and balancing the requirements of safety, serviceability, durability, robustness and sustainability will be explored.</p>","PeriodicalId":39412,"journal":{"name":"Geomechanik und Tunnelbau","volume":"18 6","pages":"643-648"},"PeriodicalIF":0.0,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}