Pub Date : 2024-11-01Epub Date: 2025-02-14DOI: 10.1080/03091902.2025.2463580
Jyoti Rani, Jaswinder Singh, Jitendra Virmani
Present work involves rigorous experimentation for classification of mammographic masses by employing four deep transfer learning models using hierarchical framework. Experimental work is carried on 518 SFM images of DDSM dataset with 208, 150 and 160 images of probably benign, suspicious- malignant and highly malignant classes, respectively. ResNet50 model is used for generating segmented mass images. For hierarchical classification framework, at node 1, the segmented mass image is classified as belonging to probably benign (BIRAD-3) class or suspicious abnormality (BIRAD-4 and BIRAD-5) class. At node 2, the segmented mass image belonging to suspicious abnormality class is further classified as suspicious malignant (BIRAD-4) class or highly malignant (BIRAD-5) class. Deep transfer learning based hierarchical CAD systems experimented in the present work include VGG16/VGG19/ GoogleNet/ResNet50 models. It was noted that deep transfer learning model VGG19 at node 1 and VGG16 at node 2, yielded highest classification accuracy of 93 % and 90 %, respectively, therefore, a deep transfer learning based hybrid hierarchical CAD system was developed by employing VGG19 at node 1 and VGG16 at node 2. This model yields overall classification accuracy of 88 %. Further, hybrid hierarchical CAD system was designed using VGG19/ANFC-LH classifier at node 1, and VGG16/ANFC-LH classifier at node 2 yielding the highest classification accuracy of 92%. The promising result yielded by hybrid hierarchical CAD system design indicates its usefulness for step-wise classification of mammographic masses.
{"title":"Deep transfer learning based hierarchical CAD system designs for SFM images.","authors":"Jyoti Rani, Jaswinder Singh, Jitendra Virmani","doi":"10.1080/03091902.2025.2463580","DOIUrl":"10.1080/03091902.2025.2463580","url":null,"abstract":"<p><p>Present work involves rigorous experimentation for classification of mammographic masses by employing four deep transfer learning models using hierarchical framework. Experimental work is carried on 518 SFM images of DDSM dataset with 208, 150 and 160 images of probably benign, suspicious- malignant and highly malignant classes, respectively. ResNet50 model is used for generating segmented mass images. For hierarchical classification framework, at node 1, the segmented mass image is classified as belonging to probably benign (BIRAD-3) class or suspicious abnormality (BIRAD-4 and BIRAD-5) class. At node 2, the segmented mass image belonging to suspicious abnormality class is further classified as suspicious malignant (BIRAD-4) class or highly malignant (BIRAD-5) class. Deep transfer learning based hierarchical CAD systems experimented in the present work include VGG16/VGG19/ GoogleNet/ResNet50 models. It was noted that deep transfer learning model VGG19 at node 1 and VGG16 at node 2, yielded highest classification accuracy of 93 % and 90 %, respectively, therefore, a deep transfer learning based hybrid hierarchical CAD system was developed by employing VGG19 at node 1 and VGG16 at node 2. This model yields overall classification accuracy of 88 %. Further, hybrid hierarchical CAD system was designed using VGG19/ANFC-LH classifier at node 1, and VGG16/ANFC-LH classifier at node 2 yielding the highest classification accuracy of 92%. The promising result yielded by hybrid hierarchical CAD system design indicates its usefulness for step-wise classification of mammographic masses.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"279-295"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2025-03-10DOI: 10.1080/03091902.2025.2474849
J Fenner
{"title":"News and Product Update.","authors":"J Fenner","doi":"10.1080/03091902.2025.2474849","DOIUrl":"https://doi.org/10.1080/03091902.2025.2474849","url":null,"abstract":"","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"48 8","pages":"315-317"},"PeriodicalIF":0.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2025-02-14DOI: 10.1080/03091902.2025.2463574
Suvita Rani Sharma, Birmohan Singh, Manpreet Kaur
The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interference. The preprocessed signals are segmented by R peak detection process. Thereafter, the greyscale and scalograms images have been formed. The features of the images are extracted using the EfficientNet-B0 deep learning model. These features are normalised using z-score normalisation method and then optimal features are selected using the hybrid feature selection method. The hybrid feature selection is constructed utilising two filter methods and Self Adaptive Bald Eagle Search (SABES) optimisation algorithm. The proposed methodology has been applied to the ECG signals for the classification of the five types of beats. The methodology acquired 99.31% of accuracy.
{"title":"An arrhythmia classification using a deep learning and optimisation-based methodology.","authors":"Suvita Rani Sharma, Birmohan Singh, Manpreet Kaur","doi":"10.1080/03091902.2025.2463574","DOIUrl":"10.1080/03091902.2025.2463574","url":null,"abstract":"<p><p>The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interference. The preprocessed signals are segmented by R peak detection process. Thereafter, the greyscale and scalograms images have been formed. The features of the images are extracted using the EfficientNet-B0 deep learning model. These features are normalised using z-score normalisation method and then optimal features are selected using the hybrid feature selection method. The hybrid feature selection is constructed utilising two filter methods and Self Adaptive Bald Eagle Search (SABES) optimisation algorithm. The proposed methodology has been applied to the ECG signals for the classification of the five types of beats. The methodology acquired 99.31% of accuracy.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"253-261"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2025-02-12DOI: 10.1080/03091902.2025.2462310
Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma
This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.
{"title":"Hybrid attention-CNN model for classification of gait abnormalities using EMG scalogram images.","authors":"Pranshu C B S Negi, S S Pandey, Shiru Sharma, Neeraj Sharma","doi":"10.1080/03091902.2025.2462310","DOIUrl":"10.1080/03091902.2025.2462310","url":null,"abstract":"<p><p>This research aimed to develop an algorithm for classifying scalogram images generated from electromyography data of patients with Rheumatoid Arthritis and Prolapsed Intervertebral Disc. Electromyography is valuable for assessing muscle function and diagnosing neurological disorders, but limitations, such as background noise, cross-talk, and inter-subject variability complicate the interpretation and assessment. To mitigate this, the present study uses scalogram images and attention-network architecture. The algorithm utilises a combination of features extracted from an attention module and a convolution feature module, followed by classification using a Convolutional Neural Network classifier. A comparison of eight alternative architectures, including individual implementations of attention and convolution filters and a Convolutional Neural Network-only model, shows that the hybrid Convolutional Neural Network model proposed in this study outperforms the others. The model exhibits excellent discriminatory ability between gait abnormalities with an accuracy of 96.7%, a precision of 95.2%, a recall of 94.8%, and an Area Under Curve of 0.99. These findings suggest that the proposed model is highly accurate in classifying scalogram images of electromyography signals and may have significant clinical implications for early diagnosis and treatment planning.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"239-252"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143400308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2025-02-14DOI: 10.1080/03091902.2025.2463577
Ensong Jiang, Tangsen Huang, Xiangdong Yin
Developing a robust and effective technique is crucial for interpreting a user's brainwave signals accurately in the realm of biomedical signal processing. The variability and uncertainty present in EEG patterns over time, compounded by noise, pose notable challenges, particularly in mental tasks like motor imagery. Introducing fuzzy components can enhance the system's ability to withstand noisy environments. The emergence of deep learning has significantly impacted artificial intelligence and data analysis, prompting extensive exploration into assessing and understanding brain signals. This work introduces a hybrid series architecture called FCLNET, which combines Compact-CNN to extract frequency and spatial features alongside the LSTM network for temporal feature extraction. The activation functions in the CNN architecture were implemented using type-2 fuzzy functions to tackle uncertainties. Hyperparameters of the FCLNET model are tuned by the Bayesian optimisation algorithm. The efficacy of this approach is assessed through the BCI Competition IV-2a database and the BCI Competition IV-1 database. By incorporating type-2 fuzzy activation functions and employing Bayesian optimisation for tuning, the proposed architecture indicates good classification accuracy compared to the literature. Outcomes showcase the exceptional achievements of the FCLNET model, suggesting that integrating fuzzy units into other classifiers could lead to advancements in motor imagery-based BCI systems.
{"title":"A combination of deep learning models and type-2 fuzzy for EEG motor imagery classification through spatiotemporal-frequency features.","authors":"Ensong Jiang, Tangsen Huang, Xiangdong Yin","doi":"10.1080/03091902.2025.2463577","DOIUrl":"10.1080/03091902.2025.2463577","url":null,"abstract":"<p><p>Developing a robust and effective technique is crucial for interpreting a user's brainwave signals accurately in the realm of biomedical signal processing. The variability and uncertainty present in EEG patterns over time, compounded by noise, pose notable challenges, particularly in mental tasks like motor imagery. Introducing fuzzy components can enhance the system's ability to withstand noisy environments. The emergence of deep learning has significantly impacted artificial intelligence and data analysis, prompting extensive exploration into assessing and understanding brain signals. This work introduces a hybrid series architecture called FCLNET, which combines Compact-CNN to extract frequency and spatial features alongside the LSTM network for temporal feature extraction. The activation functions in the CNN architecture were implemented using type-2 fuzzy functions to tackle uncertainties. Hyperparameters of the FCLNET model are tuned by the Bayesian optimisation algorithm. The efficacy of this approach is assessed through the BCI Competition IV-2a database and the BCI Competition IV-1 database. By incorporating type-2 fuzzy activation functions and employing Bayesian optimisation for tuning, the proposed architecture indicates good classification accuracy compared to the literature. Outcomes showcase the exceptional achievements of the FCLNET model, suggesting that integrating fuzzy units into other classifiers could lead to advancements in motor imagery-based BCI systems.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"262-275"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143415610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2025-02-19DOI: 10.1080/03091902.2025.2461392
J Fenner
{"title":"News and product update.","authors":"J Fenner","doi":"10.1080/03091902.2025.2461392","DOIUrl":"10.1080/03091902.2025.2461392","url":null,"abstract":"","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"276-278"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-12-27DOI: 10.1080/03091902.2024.2438150
Fatemeh Ghasemi, Majid Sepahvand, Maytham N Meqdad, Fardin Abdali Mohammadi
Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample. Unlike conventional regression, the GP approach automatically determines the structure and combinations of a mathematical model. Given that mean square error (MSE) of 0.0001, root mean square error (RMSE) of 0.01, and correlation coefficient of 0.999, the proposed approach outperformed other approaches and proved effective in terms of efficiency and applicability in resource-constrained environments.
{"title":"Synthetic photoplethysmogram (PPG) signal generation using a genetic programming-based generative model.","authors":"Fatemeh Ghasemi, Majid Sepahvand, Maytham N Meqdad, Fardin Abdali Mohammadi","doi":"10.1080/03091902.2024.2438150","DOIUrl":"10.1080/03091902.2024.2438150","url":null,"abstract":"<p><p>Nowadays, photoplethysmograph (PPG) technology is being used more often in smart devices and mobile phones due to advancements in information and communication technology in the health field, particularly in monitoring cardiac activities. Developing generative models to generate synthetic PPG signals requires overcoming challenges like data diversity and limited data available for training deep learning models. This paper proposes a generative model by adopting a genetic programming (GP) approach to generate increasingly diversified and accurate data using an initial PPG signal sample. Unlike conventional regression, the GP approach automatically determines the structure and combinations of a mathematical model. Given that mean square error (MSE) of 0.0001, root mean square error (RMSE) of 0.01, and correlation coefficient of 0.999, the proposed approach outperformed other approaches and proved effective in terms of efficiency and applicability in resource-constrained environments.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"223-235"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142899078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-12-04DOI: 10.1080/03091902.2024.2426422
J Fenner
{"title":"News and product update.","authors":"J Fenner","doi":"10.1080/03091902.2024.2426422","DOIUrl":"10.1080/03091902.2024.2426422","url":null,"abstract":"","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"236-238"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-12-09DOI: 10.1080/03091902.2024.2435861
Kamal Fani
{"title":"An idea for redo median sternotomy.","authors":"Kamal Fani","doi":"10.1080/03091902.2024.2435861","DOIUrl":"10.1080/03091902.2024.2435861","url":null,"abstract":"","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"211-212"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-12-09DOI: 10.1080/03091902.2024.2438158
Amitesh Badkul, Inturi Vamsi, Radhika Sudha
The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the chest X-ray images (CXR) with the deep convolutional neural network (DCNN) models through a fine-tuning and pre-training approach. CXR images pertaining to four health scenarios, namely, healthy, COVID-19, bacterial pneumonia and viral pneumonia, are considered and subjected to data augmentation. Two types of input datasets are prepared; in which dataset I contains the original image dataset categorised under four classes, whereas the original CXR images are subjected to image pre-processing via Contrast Limited Adaptive Histogram Equalisation (CLAHE) algorithm and Blackhat Morphological Operation (BMO) for devising the input dataset II. Both datasets are supplied as input to various DCNN models such as DenseNet, MobileNet, ResNet, VGG16, and Xception for achieving multi-class classification. It is observed that the classification accuracies are improved, and the classification errors are reduced with the image pre-processing. Overall, the VGG16 model resulted in better classification accuracies and reduced classification errors while accomplishing multi-class classification. Thus, the proposed work would assist the clinical diagnosis, and reduce the workload of the front-line healthcare workforce and medical professionals.
{"title":"Comparative study of DCNN and image processing based classification of chest X-rays for identification of COVID-19 patients using fine-tuning.","authors":"Amitesh Badkul, Inturi Vamsi, Radhika Sudha","doi":"10.1080/03091902.2024.2438158","DOIUrl":"10.1080/03091902.2024.2438158","url":null,"abstract":"<p><p>The conventional detection of COVID-19 by evaluating the CT scan images is tiresome, often experiences high inter-observer variability and uncertainty issues. This work proposes the automatic detection and classification of COVID-19 by analysing the chest X-ray images (CXR) with the deep convolutional neural network (DCNN) models through a fine-tuning and pre-training approach. CXR images pertaining to four health scenarios, namely, healthy, COVID-19, bacterial pneumonia and viral pneumonia, are considered and subjected to data augmentation. Two types of input datasets are prepared; in which dataset I contains the original image dataset categorised under four classes, whereas the original CXR images are subjected to image pre-processing <i>via</i> Contrast Limited Adaptive Histogram Equalisation (CLAHE) algorithm and Blackhat Morphological Operation (BMO) for devising the input dataset II. Both datasets are supplied as input to various DCNN models such as DenseNet, MobileNet, ResNet, VGG16, and Xception for achieving multi-class classification. It is observed that the classification accuracies are improved, and the classification errors are reduced with the image pre-processing. Overall, the VGG16 model resulted in better classification accuracies and reduced classification errors while accomplishing multi-class classification. Thus, the proposed work would assist the clinical diagnosis, and reduce the workload of the front-line healthcare workforce and medical professionals.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"213-222"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}