Pub Date : 2023-04-01Epub Date: 2024-01-22DOI: 10.1080/03091902.2023.2300829
Jaymes Schmidt, Dylan Goode, Ryan Flannigan, Hadi Mohammadi
The present work provides a comprehensive review of the literature on the mechanical properties and existing human tunica albuginea tissue testing methods. Assessments were completed on papers reporting experimental values of Young's modulus, tensile strength, puncture strength, stiffness, toughness, and strain at the ultimate tensile strength (UTS). A high degree of variability in the reported experimental values was found; Young's modulus ranged from 5 MPa to 118 MPa, and tensile strength went from 1.1 MPa to 6.1 MPa. A comparison of the variability of the reported experimental values for puncture strength, stiffness, toughness, and strain at the UTS could not be completed due to a lack of experimental results. This review discusses the pathophysiology and surgical treatment of erectile dysfunction and Peyronie's disease, variability in the existing reported mechanical properties, the impact of the variability of mechanical properties on in silico models and explores the absence of a standardised testing method as a possible reason for the variable in results. Finally, this work attempts to provide suggestions for standardising future mechanical testing of the tunica albuginea through minimising and reporting freeze/thaw cycling, noting the proximal/distal region of the cadaver tunica sample, reporting the orientation (o'clock position) of the cadaver tunica sample, and testing the cadaver tunica samples in bi-axial tension. Ultimately, standardising the testing methodologies of the tunica albuginea will provide higher confidence in reported mechanical property values.
{"title":"A review of the experimental methods and results of testing the mechanical properties of Tunica Albuginea.","authors":"Jaymes Schmidt, Dylan Goode, Ryan Flannigan, Hadi Mohammadi","doi":"10.1080/03091902.2023.2300829","DOIUrl":"10.1080/03091902.2023.2300829","url":null,"abstract":"<p><p>The present work provides a comprehensive review of the literature on the mechanical properties and existing human tunica albuginea tissue testing methods. Assessments were completed on papers reporting experimental values of Young's modulus, tensile strength, puncture strength, stiffness, toughness, and strain at the ultimate tensile strength (UTS). A high degree of variability in the reported experimental values was found; Young's modulus ranged from 5 MPa to 118 MPa, and tensile strength went from 1.1 MPa to 6.1 MPa. A comparison of the variability of the reported experimental values for puncture strength, stiffness, toughness, and strain at the UTS could not be completed due to a lack of experimental results. This review discusses the pathophysiology and surgical treatment of erectile dysfunction and Peyronie's disease, variability in the existing reported mechanical properties, the impact of the variability of mechanical properties on in silico models and explores the absence of a standardised testing method as a possible reason for the variable in results. Finally, this work attempts to provide suggestions for standardising future mechanical testing of the tunica albuginea through minimising and reporting freeze/thaw cycling, noting the proximal/distal region of the cadaver tunica sample, reporting the orientation (o'clock position) of the cadaver tunica sample, and testing the cadaver tunica samples in bi-axial tension. Ultimately, standardising the testing methodologies of the tunica albuginea will provide higher confidence in reported mechanical property values.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"234-241"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-02-15DOI: 10.1080/03091902.2023.2174198
Youness Arjoune, Trong N Nguyen, Robin W Doroshow, Raj Shekhar
Digital stethoscopes can enable the development of integrated artificial intelligence (AI) systems that can remove the subjectivity of manual auscultation, improve diagnostic accuracy, and compensate for diminishing auscultatory skills. Developing scalable AI systems can be challenging, especially when acquisition devices differ and thus introduce sensor bias. To address this issue, a precise knowledge of these differences, i.e., frequency responses of these devices, is needed, but the manufacturers often do not provide complete device specifications. In this study, we reported an effective methodology for determining the frequency response of a digital stethoscope and used it to characterise three common digital stethoscopes: Littmann 3200, Eko Core, and Thinklabs One. Our results show significant inter-device variability in that the frequency responses of the three studied stethoscopes were distinctly different. A moderate intra-device variability was seen when comparing two separate units of Littmann 3200. The study highlights the need for normalisation across devices for developing successful AI-assisted auscultation and provides a technical characterisation approach as a first step to accomplish it.
{"title":"Technical characterisation of digital stethoscopes: towards scalable artificial intelligence-based auscultation.","authors":"Youness Arjoune, Trong N Nguyen, Robin W Doroshow, Raj Shekhar","doi":"10.1080/03091902.2023.2174198","DOIUrl":"10.1080/03091902.2023.2174198","url":null,"abstract":"<p><p>Digital stethoscopes can enable the development of integrated artificial intelligence (AI) systems that can remove the subjectivity of manual auscultation, improve diagnostic accuracy, and compensate for diminishing auscultatory skills. Developing scalable AI systems can be challenging, especially when acquisition devices differ and thus introduce sensor bias. To address this issue, a precise knowledge of these differences, i.e., frequency responses of these devices, is needed, but the manufacturers often do not provide complete device specifications. In this study, we reported an effective methodology for determining the frequency response of a digital stethoscope and used it to characterise three common digital stethoscopes: Littmann 3200, Eko Core, and Thinklabs One. Our results show significant inter-device variability in that the frequency responses of the three studied stethoscopes were distinctly different. A moderate intra-device variability was seen when comparing two separate units of Littmann 3200. The study highlights the need for normalisation across devices for developing successful AI-assisted auscultation and provides a technical characterisation approach as a first step to accomplish it.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 3","pages":"165-178"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2024-01-22DOI: 10.1080/03091902.2024.2302025
Ana Horovistiz, Marina Oliveira, Helder Araújo
Endoscopic investigation plays a critical role in the diagnosis of gastrointestinal (GI) diseases. Since 2001, Wireless Capsule Endoscopy (WCE) has been available for small bowel exploration and is in continuous development. Over the last decade, WCE has achieved impressive improvements in areas such as miniaturisation, image quality and battery life. As a result, WCE is currently a very useful alternative to wired enteroscopy in the investigation of various small bowel abnormalities and has the potential to become the leading screening technique for the entire gastrointestinal tract. However, commercial solutions still have several limitations, namely incomplete examination and limited diagnostic capacity. These deficiencies are related to technical issues, such as image quality, motion estimation and power consumption management. Computational methods, based on image processing and analysis, can help to overcome these challenges and reduce both the time required by reviewers and human interpretation errors. Research groups have proposed a series of methods including algorithms for locating the capsule or lesion, assessing intestinal motility and improving image quality.In this work, we provide a critical review of computational vision-based methods for WCE image analysis aimed at overcoming the technological challenges of capsules. This article also reviews several representative public datasets used to evaluate the performance of WCE techniques and methods. Finally, some promising solutions of computational methods based on the analysis of multiple-camera endoscopic images are presented.
{"title":"Computer vision-based solutions to overcome the limitations of wireless capsule endoscopy.","authors":"Ana Horovistiz, Marina Oliveira, Helder Araújo","doi":"10.1080/03091902.2024.2302025","DOIUrl":"10.1080/03091902.2024.2302025","url":null,"abstract":"<p><p>Endoscopic investigation plays a critical role in the diagnosis of gastrointestinal (GI) diseases. Since 2001, Wireless Capsule Endoscopy (WCE) has been available for small bowel exploration and is in continuous development. Over the last decade, WCE has achieved impressive improvements in areas such as miniaturisation, image quality and battery life. As a result, WCE is currently a very useful alternative to wired enteroscopy in the investigation of various small bowel abnormalities and has the potential to become the leading screening technique for the entire gastrointestinal tract. However, commercial solutions still have several limitations, namely incomplete examination and limited diagnostic capacity. These deficiencies are related to technical issues, such as image quality, motion estimation and power consumption management. Computational methods, based on image processing and analysis, can help to overcome these challenges and reduce both the time required by reviewers and human interpretation errors. Research groups have proposed a series of methods including algorithms for locating the capsule or lesion, assessing intestinal motility and improving image quality.In this work, we provide a critical review of computational vision-based methods for WCE image analysis aimed at overcoming the technological challenges of capsules. This article also reviews several representative public datasets used to evaluate the performance of WCE techniques and methods. Finally, some promising solutions of computational methods based on the analysis of multiple-camera endoscopic images are presented.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"242-261"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2024-01-22DOI: 10.1080/03091902.2023.2267116
N Sriraam, Avvaru Srinivasulu, V S Prakash
A first-level textile-based electrocardiogram (ECG) monitoring system referred to as "CardioS" (cardiac sensor) for continuous health monitoring applications is proposed in this study to address the demand for resource-constrained environments. and the signal quality assessment of a wireless CardioS was studied. The CardioS consists of a Lead-I ECG signal recorded wirelessly using silver-plated nylon woven (Ag-NyW) dry textile electrodes to compare the results of wired wearable Ag-NyW textile electrode-based ECG acquisition system and CardioS. The effect of prolonged usage of Ag-NyW dry electrodes on electrode impedance was tested in the current work. In addition, electrode half-cell potential was measured to validate the range of Ag-NyW dry electrodes for ECG signal acquisition. Further, the quality of signals recorded by the proposed wireless CardioS framework was evaluated and compared with clinical disposable (Ag-AgCl Gel) electrodes. The signal quality was assessed in terms of mean magnitude coherence spectra, signal cross-correlation, signal-to-noise-band ratio (Sband/Nband), crest factor, low and high band powers and power spectral density. The experimental results showed that the impedance was increased by 2.5-54.6% after six weeks of continuous usage. This increased impedance was less than 1 MΩ/cm2, as reported in the literature. The half-cell potential of the Ag-NyW textile electrode obtained was 80 mV, sufficient to acquire the ECG signal from the human body. All the fidelity parameters measured by Ag-NyW textile electrodes were correlated with standard disposable electrodes. The cardiologists validated all the measurements and confirmed that the proposed framework exhibited good performance for ECG signal acquisition from the five healthy subjects. As a result of its low-cost architecture, the proposed CardioS framework can be used in resource-constrained environments for ECG monitoring.
{"title":"Wireless CardioS framework for continuous ECG acquisition.","authors":"N Sriraam, Avvaru Srinivasulu, V S Prakash","doi":"10.1080/03091902.2023.2267116","DOIUrl":"10.1080/03091902.2023.2267116","url":null,"abstract":"<p><p>A first-level textile-based electrocardiogram (ECG) monitoring system referred to as \"CardioS\" (cardiac sensor) for continuous health monitoring applications is proposed in this study to address the demand for resource-constrained environments. and the signal quality assessment of a wireless CardioS was studied. The CardioS consists of a Lead-I ECG signal recorded wirelessly using silver-plated nylon woven (Ag-NyW) dry textile electrodes to compare the results of wired wearable Ag-NyW textile electrode-based ECG acquisition system and CardioS. The effect of prolonged usage of Ag-NyW dry electrodes on electrode impedance was tested in the current work. In addition, electrode half-cell potential was measured to validate the range of Ag-NyW dry electrodes for ECG signal acquisition. Further, the quality of signals recorded by the proposed wireless CardioS framework was evaluated and compared with clinical disposable (Ag-AgCl Gel) electrodes. The signal quality was assessed in terms of mean magnitude coherence spectra, signal cross-correlation, signal-to-noise-band ratio (<i>S</i><sub>band</sub>/<i>N</i><sub>band</sub>), crest factor, low and high band powers and power spectral density. The experimental results showed that the impedance was increased by 2.5-54.6% after six weeks of continuous usage. This increased impedance was less than 1 MΩ/cm<sup>2</sup>, as reported in the literature. The half-cell potential of the Ag-NyW textile electrode obtained was 80 mV, sufficient to acquire the ECG signal from the human body. All the fidelity parameters measured by Ag-NyW textile electrodes were correlated with standard disposable electrodes. The cardiologists validated all the measurements and confirmed that the proposed framework exhibited good performance for ECG signal acquisition from the five healthy subjects. As a result of its low-cost architecture, the proposed CardioS framework can be used in resource-constrained environments for ECG monitoring.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"201-216"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71427661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1080/03091902.2022.2134482
Manthan Shah, Dylan Goode, Hadi Mohammadi
Tremors are a prevalent movement disorder due to a nervous system condition that leads to involuntary muscle movements observed in patients. This paper converts the tremorous anatomical human arm model to a single degree of freedom (SDOF) forced vibration problem. The mathematical modelling with Euler-Lagrange's equation is performed for the SDOF human arm model with two different potential vibration absorbers. A computational study is conducted on MATLAB Simulink by MathWorks Inc. (Natick, MA) to compare two absorbers, and the results are verified on the multibody dynamics simulation solution software, MSC Adams by Hexagon AB. It is concluded that the T beam-shaped vibration absorber represented a higher amplitude reduction, up to 80%, compared to the inertial mass absorber, which had an amplitude reduction of 65% over the range of frequencies. Experiments conducted with the T beam absorber prototype also support the computational findings. Future research focuses on designing an ergonomic wearable device with a proposed T-beam absorber that can passively attenuate the tremor at various frequencies.
震颤是一种普遍的运动障碍,由于神经系统状况导致患者观察到的不随意肌肉运动。本文将震颤人体手臂解剖模型转化为单自由度强迫振动问题。用欧拉-拉格朗日方程对具有两种不同吸振位的SDOF人体手臂模型进行了数学建模。在MathWorks Inc. (Natick, MA)的MATLAB Simulink上进行了计算研究,比较了两种吸振器,并在Hexagon AB公司的多体动力学仿真解决方案软件MSC Adams上验证了结果。结论是,与惯性质量吸振器相比,T梁形吸振器在频率范围内的幅度降低了65%,幅度降低了80%。用T梁吸收体原型进行的实验也支持了计算结果。未来的研究重点是设计一种符合人体工程学的可穿戴设备,该设备带有拟议的t束吸收器,可以被动地衰减不同频率的震颤。
{"title":"Computational study and validation of a novel passive hand tremor attenuator.","authors":"Manthan Shah, Dylan Goode, Hadi Mohammadi","doi":"10.1080/03091902.2022.2134482","DOIUrl":"https://doi.org/10.1080/03091902.2022.2134482","url":null,"abstract":"<p><p>Tremors are a prevalent movement disorder due to a nervous system condition that leads to involuntary muscle movements observed in patients. This paper converts the tremorous anatomical human arm model to a single degree of freedom (SDOF) forced vibration problem. The mathematical modelling with Euler-Lagrange's equation is performed for the SDOF human arm model with two different potential vibration absorbers. A computational study is conducted on MATLAB Simulink by MathWorks Inc. (Natick, MA) to compare two absorbers, and the results are verified on the multibody dynamics simulation solution software, MSC Adams by Hexagon AB. It is concluded that the T beam-shaped vibration absorber represented a higher amplitude reduction, up to 80%, compared to the inertial mass absorber, which had an amplitude reduction of 65% over the range of frequencies. Experiments conducted with the T beam absorber prototype also support the computational findings. Future research focuses on designing an ergonomic wearable device with a proposed T-beam absorber that can passively attenuate the tremor at various frequencies.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 3","pages":"157-164"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9720573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2024-01-22DOI: 10.1080/03091902.2023.2286945
Bashar Al-Haj Moh'd
The COVID-19 pandemic has revealed numerous global health system deficits, even in developed countries. The high cost and shortage of treatment, health care, and medical devices are the reasons. Aside from new mutations, the availability of respirators is an urgent concern, especially in developing countries. Even after the pandemic, respiratory diseases are among the most prevalent diseases. Researchers can help reduce treatment costs by offering scalable, open-source solutions that are manufacturable. Since March 2020, serious efforts have been made to reduce the problems caused by the lack of respirators at the lowest possible cost. In this research paper, a unique and integrated solution for a fully automatic ventilator is presented and described. The design considers the cost, speed of assembly, safety, ease of use, robustness, portability issues, and scalability to fit all requirements for emergency ventilation. Furthermore, the device was developed using turbine technology to generate air pressure. The work describes a low-cost alternative ventilator that uses a novel proportional-valve approach to control oxygen mixing process, control circuit, and control algorithm. The current software supports pressure mode controllers, and it can be upgraded to volume-mode or dual mode without any modifications in the hardware. In addition, the hardware, particularly the electronic circuit, has idle input/output ports for further development. Based on the evaluations of the developed ventilator using an artificial lung, the system exhibited acceptable accuracy regarding to the pressure, leak compensation, and oxygen concentration levels. The designated safety conditions have been met, and the safety alarms tripped according to any violations. Moreover, all design files are provided with clear instructions to rebuild the device, despite the complexity of electronics assembly. The system can be described as a development kit, which can shorten the time for researchers/manufacturers to develop a device equivalent to the expensive devices available in the market.
{"title":"Developing of an open-source low-cost ventilator based on turbine technology.","authors":"Bashar Al-Haj Moh'd","doi":"10.1080/03091902.2023.2286945","DOIUrl":"10.1080/03091902.2023.2286945","url":null,"abstract":"<p><p>The COVID-19 pandemic has revealed numerous global health system deficits, even in developed countries. The high cost and shortage of treatment, health care, and medical devices are the reasons. Aside from new mutations, the availability of respirators is an urgent concern, especially in developing countries. Even after the pandemic, respiratory diseases are among the most prevalent diseases. Researchers can help reduce treatment costs by offering scalable, open-source solutions that are manufacturable. Since March 2020, serious efforts have been made to reduce the problems caused by the lack of respirators at the lowest possible cost. In this research paper, a unique and integrated solution for a fully automatic ventilator is presented and described. The design considers the cost, speed of assembly, safety, ease of use, robustness, portability issues, and scalability to fit all requirements for emergency ventilation. Furthermore, the device was developed using turbine technology to generate air pressure. The work describes a low-cost alternative ventilator that uses a novel proportional-valve approach to control oxygen mixing process, control circuit, and control algorithm. The current software supports pressure mode controllers, and it can be upgraded to volume-mode or dual mode without any modifications in the hardware. In addition, the hardware, particularly the electronic circuit, has idle input/output ports for further development. Based on the evaluations of the developed ventilator using an artificial lung, the system exhibited acceptable accuracy regarding to the pressure, leak compensation, and oxygen concentration levels. The designated safety conditions have been met, and the safety alarms tripped according to any violations. Moreover, all design files are provided with clear instructions to rebuild the device, despite the complexity of electronics assembly. The system can be described as a development kit, which can shorten the time for researchers/manufacturers to develop a device equivalent to the expensive devices available in the market.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"217-233"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138463354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1080/03091902.2023.2193267
Franck Lacan, Richard Johnston, Rhys Carrington, Emiliano Spezi, Peter Theobald
The design freedom afforded by additive manufacturing (AM) is now being leveraged across multiple applications, including many in the fields of imaging for personalised medicine. This study utilises a pellet-fed, multi-material AM machine as a route to fabricating new imaging phantoms, used for developing and refining algorithms for the detection of subtle soft tissue anomalies. Traditionally comprising homogeneous materials, higher-resolution scanning now allows for heterogeneous, multi-material phantoms. Polylactic acid (PLA), a thermoplastic urethane (TPU) and a thermoplastic elastomer (TPE) were investigated as potential materials. Manufacturing accuracy and precision were assessed relative to the digital design file, whilst the potential to achieve structural heterogeneity was evaluated by quantifying infill density via micro-computed tomography. Hounsfield units (HU) were also captured via a clinical scanner. The PLA builds were consistently too small, by 0.2 - 0.3%. Conversely, TPE parts were consistently larger than the digital file, though by only 0.1%. The TPU components had negligible differences relative to the specified sizes. The accuracy and precision of material infill were inferior, with PLA exhibiting greater and lower densities relative to the digital file, across the 3 builds. Both TPU and TPE produced infills that were too dense. The PLA material produced repeatable HU values, with poorer precision across TPU and TPE. All HU values tended towards, and some exceeded, the reference value for water (0 HU) with increasing infill density. These data have demonstrated that pellet-fed AM can produce accurate and precise structures, with the potential to include multiple materials providing an opportunity for more realistic and advanced phantom designs. In doing so, this will enable clinical scientists to develop more sensitive applications aimed at detecting ever more subtle variations in tissue, confident that their calibration models reflect their intended designs.
{"title":"Towards using a multi-material, pellet-fed additive manufacturing platform to fabricate novel imaging phantoms.","authors":"Franck Lacan, Richard Johnston, Rhys Carrington, Emiliano Spezi, Peter Theobald","doi":"10.1080/03091902.2023.2193267","DOIUrl":"https://doi.org/10.1080/03091902.2023.2193267","url":null,"abstract":"<p><p>The design freedom afforded by additive manufacturing (AM) is now being leveraged across multiple applications, including many in the fields of imaging for personalised medicine. This study utilises a pellet-fed, multi-material AM machine as a route to fabricating new imaging phantoms, used for developing and refining algorithms for the detection of subtle soft tissue anomalies. Traditionally comprising homogeneous materials, higher-resolution scanning now allows for heterogeneous, multi-material phantoms. Polylactic acid (PLA), a thermoplastic urethane (TPU) and a thermoplastic elastomer (TPE) were investigated as potential materials. Manufacturing accuracy and precision were assessed relative to the digital design file, whilst the potential to achieve structural heterogeneity was evaluated by quantifying infill density <i>via</i> micro-computed tomography. Hounsfield units (HU) were also captured <i>via</i> a clinical scanner. The PLA builds were consistently too small, by 0.2 - 0.3%. Conversely, TPE parts were consistently larger than the digital file, though by only 0.1%. The TPU components had negligible differences relative to the specified sizes. The accuracy and precision of material infill were inferior, with PLA exhibiting greater and lower densities relative to the digital file, across the 3 builds. Both TPU and TPE produced infills that were too dense. The PLA material produced repeatable HU values, with poorer precision across TPU and TPE. All HU values tended towards, and some exceeded, the reference value for water (0 HU) with increasing infill density. These data have demonstrated that pellet-fed AM can produce accurate and precise structures, with the potential to include multiple materials providing an opportunity for more realistic and advanced phantom designs. In doing so, this will enable clinical scientists to develop more sensitive applications aimed at detecting ever more subtle variations in tissue, confident that their calibration models reflect their intended designs.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 3","pages":"189-196"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9373444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2023-05-10DOI: 10.1080/03091902.2023.2198436
John Fenner
{"title":"News and Product Update.","authors":"John Fenner","doi":"10.1080/03091902.2023.2198436","DOIUrl":"https://doi.org/10.1080/03091902.2023.2198436","url":null,"abstract":"","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 4","pages":"262-264"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heart rate variability (HRV) extracted from the electrocardiogram (ECG) is an essential indicator for assessing the autonomic nervous system in clinical. Some scholars have studied the feasibility of pulse rate variability (PRV) instead of HRV. However, there is little qualitative research in different body states. In this paper, the photoplethysmography (PPG) of postauricular and finger and the ECG of fifteen subjects were synchronously collected for comparative analysis. The eleven experiments were designed according to the daily living state, including the stationary state, limb movement state, and facial movement state. The substitutability of nine variables was investigated in the time, frequency, and nonlinearity domain by Passing Bablok regression and Bland Altman analysis. The results showed that the PPG of the finger was destroyed in the limb movement state. There were six variables of postauricular PRV, which showed a positive linear relationship and good agreement (p > 0.05, ratio 0.2) with HRV in all experiments. Our study suggests that the postauricular PPG could retain the necessary information of the pulse signal under the limb movement state and facial movement state. Therefore, postauricular PPG could be a better substitute for HRV, daily PPG detection, and mobile health than finger PPG.
{"title":"Comparison of pulse rate variability from post-auricula and heart rate variability during different body states for healthy subjects.","authors":"Yusheng Qi, Aihua Zhang, Yurun Ma, Tingting Chang, Jianwen Xu","doi":"10.1080/03091902.2023.2175061","DOIUrl":"https://doi.org/10.1080/03091902.2023.2175061","url":null,"abstract":"<p><p>Heart rate variability (HRV) extracted from the electrocardiogram (ECG) is an essential indicator for assessing the autonomic nervous system in clinical. Some scholars have studied the feasibility of pulse rate variability (PRV) instead of HRV. However, there is little qualitative research in different body states. In this paper, the photoplethysmography (PPG) of postauricular and finger and the ECG of fifteen subjects were synchronously collected for comparative analysis. The eleven experiments were designed according to the daily living state, including the stationary state, limb movement state, and facial movement state. The substitutability of nine variables was investigated in the time, frequency, and nonlinearity domain by Passing Bablok regression and Bland Altman analysis. The results showed that the PPG of the finger was destroyed in the limb movement state. There were six variables of postauricular PRV, which showed a positive linear relationship and good agreement (<i>p</i> > 0.05, ratio <math><mo>≤</mo></math>0.2) with HRV in all experiments. Our study suggests that the postauricular PPG could retain the necessary information of the pulse signal under the limb movement state and facial movement state. Therefore, postauricular PPG could be a better substitute for HRV, daily PPG detection, and mobile health than finger PPG.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 3","pages":"179-188"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9735877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1080/03091902.2023.2187166
Manufacturers are invited to send details of new products to be included in this section. All information supplied should be strictly factual. The text may be altered by the editors. There is no charge to the manufacturers of products featured in this section and the journal accepts no responsibility for the accuracy of the information provided. Please send details to Dr J. Fenner, Associate Editor (JMET), Medical Physics (Dept. Infection, Immunity and Cardiovascular Disease), Faculty of Medicine Dentistry and Health, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK. E-mail: j.w.fenner@sheffield.ac.uk.
{"title":"News and product update.","authors":"","doi":"10.1080/03091902.2023.2187166","DOIUrl":"https://doi.org/10.1080/03091902.2023.2187166","url":null,"abstract":"Manufacturers are invited to send details of new products to be included in this section. All information supplied should be strictly factual. The text may be altered by the editors. There is no charge to the manufacturers of products featured in this section and the journal accepts no responsibility for the accuracy of the information provided. Please send details to Dr J. Fenner, Associate Editor (JMET), Medical Physics (Dept. Infection, Immunity and Cardiovascular Disease), Faculty of Medicine Dentistry and Health, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK. E-mail: j.w.fenner@sheffield.ac.uk.","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":"47 3","pages":"197-199"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}