Statement of Problem MicroRNAs are small non-coding RNAs that regulate an array of functions by targeting crucial genes. A significant dysregulation in the TP53 profile has been observed in the head and neck squamous cell carcinoma (HNSCC) patients. Hence, the present in silico study was designed to identify those microRNAs which target TP53 gene and demonstrate their differential expression in HNSCC cases. Materials and Methods The study was extended further to explore their exosomal location using database such as EVmiRNA and ExoCarta. The study follows an observational in silico design. Computational tool miRDB was used identify the microRNA targets of TP53 gene. The UALCAN server was used to ascertain the expression of microRNA in HNSCC cases derived from the Cancer Gene Atlas dataset. The survival of HNSCC patients based on the differential expression microRNA markers were recorded. Further, each of the microRNA was queried for their exosomal presence using EVmiRNA. Results About 102 microRNA targets of TP53 gene with a target score in the range of 95-50 were identified. The differential expression data for 52 microRNAs was retrieved from the UALCAN database. The microRNAs hsa-miR-421, hsa-miR-548f-5p, and hsa-let-7c-5p were found to be differentially expressed with marked influence over the survival of HNSCC patients. Furthermore, hsa-miR-421 and hsa-let-7c-5p were found to have an exosomal origin especially in body fluids such as blood and saliva. Conclusion The results accumulated from the present study identified three microRNAs which can affect the functions of TP53 gene and bring about serious outcomes in HNSCC patients. The microRNAs of exosomal origin targeting TP53 gene in HNSCC patients can be a promising prognostic marker, which can be further used as a therapeutic lead by designing inhibitors.
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.
Dendritic cells (DCs) play a key role in initiating and regulating immune responses, and in addition to their roles in vivo, DCs are used as natural adjuvants for various tumor vaccines. In vitro, monocytes can be used to induce DCs, but in tumor patients, due to insufficient bone marrow hematopoiesis, extramedullary hematopoiesis and tumor-associated myeloid cells expand, and monocytes mainly exist in the form of myeloid-derived suppressor cells (MDSCs). The purpose of this experiment was to explore the differences in the differentiation and immune function of DCs induced by MDSCs in tumor patients. In a mouse model, we used normal mouse bone marrow cell-derived DCs as control cells, and in a tumor-bearing model, we induced MDSCs in the spleen to generate DCs (MDSC-DCs). Through flow cytometry, we found that the production of MDSC-DCs was significantly higher than that of control mice, and the secretion of interferon-γ of MDSC-DCs was significantly reduced. Through OVA antigen presentation experiments, we found that the antigen presentation ability of MDSC-DCs was significantly decreased. Through adoptive treatment of tumor-bearing mice cells, we found that the antitumor immune function of MDSC-DCs was significantly reduced. After that, we explored the mechanism of the decrease of immune function activity of MDSC-DCs. We determined that the surface markers of MDSC-DCs were changed by flow cytometry. Through flow sorting and RNA sequencing, we found that some pathways and key gene expression in MDSC-DCs were changed. In conclusion, this study found that the immune function of MDSC-DCs decreased and explored the mechanism of the decreased immune function activity.
Variants (Alfa, Gamma, Beta, and Delta) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are circulating worldwide. These variants of concerns share some common mutations but they also have distinguishing mutations. These mutations affect transmissibility of virus and cause evasion from neutralizing antibodies. Monitoring and identification of circulating variants is of great importance for public health. In this study, an in-house SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) kit was designed to detect variants of concerns by the World Health Organization. Primer sets and probes were designed to target presence of virus along with mutations for identifying different variants (for N501Y, HV69-70del, K417N, and T478K). Reactions were set by using commercially available master mixes without a reference dye. The RT-qPCR conditions were optimized by using commercially available ribonucleic acid samples of wild-type, Alfa, Beta, Gamma, and Delta variants. Several samples were also analyzed by the in-house kit after optimization studies. All Alfa variant and wild-type samples were also double confirmed with a commercially available variant detection kit demonstrating a 100% consistence with the in-house kit. Beta, Gamma, and Delta variants could not be confirmed with any other commercially available kits as there is not any available one in the market. SARS-CoV-2 variants are gaining importance during the pandemic and shaping the fight against the virus. RT-qPCR kits detecting different variants would provide a significant advantage while screening the population.
We reported the case of acute encephalopathy related to colonic acid treatment interruption in a 12-year-old female child presenting to our unit with episodes of vomiting, headache, irritability, acute confusional state, seizures, and left lower limb hypotonia. Brain magnetic resonance imaging (MRI) showed signs of vasogenic and cytotoxic edema at the cerebellar level bilaterally, and lesions at the temporo-occipito-parietal right level, temporomandibular left, and right thalamic with swelling of the convolutions and reduced differentiation between white and gray matter. The patient had suspended the folinic acid treatment at least 6 months before the present admission. The relation between the clinical signs presented by the girl and folic acid deficiency was confirmed by the result of laboratory assessment and by the answer to the notable clinical improvement with the renewal of folinic acid treatment. Dihydropteridine reductase (DHPR) deficiency is a rare autosomal recessive genetic disorder caused by the quinoid dihydropteridine reductase (QDPR) gene mutations. DHPR deficiency impairs the synthesis of the tetrahydrobiopterin (BH4), an essential cofactor for the hydroxylation of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. When not precociously treated, the disorder may present whit severe neurologic impairment including developmental delay/intellective disability (DD/ID), microcephaly, seizures, movement disorders, cerebral palsy, and other neurological impairments. The clinical and neuroradiologic anomalies observed in our case were unusual, with signs previously unreported in patients with folic acid deficiency. The present case shows that the clinical presentation and MRI anomalies of the cerebral folic acid deficiency may be various and unusual compared with those reported in the literature, and it confirms the usefulness of the continuation of folinic acid treatment during the course of the disorder in patients with DHPR deficiency.
Because of active advancement in the field of biomedicine, people have in-depth knowledge of biological nature of malignant tumors and are able to recognized the overexpression of different molecules such as vascular endothelial growth factor receptor, cyclin-dependent kinase, and programmed cell death receptor. Presently, various targeted therapeutic drugs are used in different clinical trials in those patients suffering from oral squamous cell carcinoma. In this review, we converse about the various targeted therapeutic drugs and their advancement in the treatment of oral squamous cell carcinoma. This review scrutinizes the existing documentation in the literature related to the targeted therapies for oral squamous cell carcinoma. English language articles were searched in various databases such as PubMed, Scopus, Science Direct, and Google Scholar. The keywords used for searching are "oral squamous cell carcinoma," "targeted therapy," and "therapeutic drugs."
Introduction Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by the degeneration of motor neurons, muscle weakness, and atrophy that leads to infant's death. The duplication of exon 7/8 in the SMN2 gene reduces the clinical severity of disease, and it is defined as modifying effect. In this study, we aim to investigate the expression of modifying genes related to the prognosis of SMA like PLS3 , PFN2 , ZPR1 , CORO1C , GTF2H2 , NRN1 , SERF1A , NCALD , NAIP , and TIA1. Methods Seventeen patients, who came to Trakya University, Faculty of Medicine, Medical Genetics Department, with a preliminary diagnosis of SMA disease, and eight healthy controls were included in this study after multiplex ligation-dependent probe amplification analysis. Gene expression levels were determined by real-time reverse transcription polymerase chain reaction and delta-delta CT method by the isolation of RNA from peripheral blood of patients and controls. Results SERF1A and NAIP genes compared between A group and B + C + D groups, and A group of healthy controls, showed statistically significant differences ( p = 0.037, p = 0.001). Discussion PLS3, NAIP , and NRN1 gene expressions related to SMA disease have been reported before in the literature. In our study, the expression levels of SERF1A , GTF2H2 , NCALD , ZPR1 , TIA1 , PFN2 , and CORO1C genes have been studied for the first time in SMA patients.
Fanconi anemia (FA) is an autosomal recessive disorder, both genetically and phenotypically. It is characterized by chromosomal instability, progressive bone marrow failure, susceptibility to cancer, and various other congenital abnormalities. It involves all the three cell lines of blood. So far, biallelic mutations in 21 genes and one x-linked gene have been detected and found to be associated with FA phenotype. Signs and symptoms start setting in by the age of 4 to 7 years, mainly hematological symptoms. This includes pancytopenia, that is, a reduction in the number of white blood cells (WBCs), red blood cells (RBCs), and platelets. Therefore, the main criteria for diagnosis of FA include skeletal malformations, pancytopenia, hyperpigmentation, short stature, urogenital abnormalities, central nervous system, auditory, renal, ocular, and familial occurrence. Patients showing signs and symptoms of FA should be thoroughly evaluated. A complete blood count will reveal a reduced number of RBC, WBC, and platelets, that is, pancytopenia. Chromosomal breakage study/stress cytogenetics should be done in patients with severe pancytopenia. Momentousness timely diagnosis of current disease, prenatal diagnosis, and genetic counseling should be emphasized.