首页 > 最新文献

Gradevnski Materijiali I Konstrukcije-Building Materials and Structures最新文献

英文 中文
Typology of NSPA pushover curves and surfaces for 3D performance-based seismic response of structures 基于三维性能的结构地震反应的NSPA推覆曲线和曲面类型
IF 0.4 Q4 ENGINEERING, CIVIL Pub Date : 2013-01-01 DOI: 10.5937/GRMK1304019C
M. Ćosić, S. Brčić
This paper presents a typology of pushover curves and the originally developed pushover surfaces based on the generalization of the nonlinear response of the 3D system to the earthquake action. By determination and analysis of the NSPA (Nonlinear Static Pushover Analysis) pushover surface, it is possible to obtain a more complex and complete insight of the response and performance of 3D models of structures exposed to the bidirectional seismic action. The setting which was a base for the development of mathematical formulation and generation of the NSPA pushover surface presents the application of NSPA pushover curve for the response of the system in one direction. By integrating the system responses for a number of directions, i.e. attack angles of directions of earthquake action, the presentation of 3D response of the system in the capacity domain is achieved. The typology of NSPA pushover curves is derived as a function of the existence of linear, nonlinear and collapse sub domain, and also considerations are made taking into account the nonlinear stiffness and ductility class of the system. The typology of NSPA pushover surface is derived based on the generalized model of the system response through ductility, ductility in hardening/softening zone and a coefficient of the relationship of stiffness in the nonlinear and linear domain, based on which it is possible to create systems of different stiffness, strength and ductility. The research presented in this paper defines the typological models of NSPA pushover surfaces which can be the base of further discussion on real pushover surfaces of 3D models of structures with a more complex, particularly non-symmetric geometry, as well as the variation of responses of the system due to bidirectional seismic actions.
本文在推广三维系统对地震作用的非线性响应的基础上,提出了一种可推覆曲线的类型和最初开发的可推覆曲面。通过对NSPA(非线性静态推覆分析)推覆面的测定和分析,可以更全面地了解结构在双向地震作用下的三维模型的响应和性能。该设置为NSPA推覆曲面数学公式的建立和生成奠定了基础,展示了NSPA推覆曲线在系统单方向响应中的应用。通过对系统在多个方向(即地震作用方向的攻角)上的响应进行积分,得到系统在容量域中的三维响应。推导了NSPA推覆曲线的类型,作为线性、非线性和崩溃子域存在的函数,并考虑了系统的非线性刚度和延性等级。基于系统延性响应的广义模型、硬化/软化区的延性以及非线性和线性域的刚度关系系数,推导了NSPA推覆面类型,并在此基础上创建了不同刚度、强度和延性的系统。本文的研究定义了NSPA推覆面的类型模型,为进一步讨论更复杂,特别是非对称几何结构的三维模型的实际推覆面以及系统在双向地震作用下的响应变化奠定了基础。
{"title":"Typology of NSPA pushover curves and surfaces for 3D performance-based seismic response of structures","authors":"M. Ćosić, S. Brčić","doi":"10.5937/GRMK1304019C","DOIUrl":"https://doi.org/10.5937/GRMK1304019C","url":null,"abstract":"This paper presents a typology of pushover curves and the originally developed pushover surfaces based on the generalization of the nonlinear response of the 3D system to the earthquake action. By determination and analysis of the NSPA (Nonlinear Static Pushover Analysis) pushover surface, it is possible to obtain a more complex and complete insight of the response and performance of 3D models of structures exposed to the bidirectional seismic action. The setting which was a base for the development of mathematical formulation and generation of the NSPA pushover surface presents the application of NSPA pushover curve for the response of the system in one direction. By integrating the system responses for a number of directions, i.e. attack angles of directions of earthquake action, the presentation of 3D response of the system in the capacity domain is achieved. The typology of NSPA pushover curves is derived as a function of the existence of linear, nonlinear and collapse sub domain, and also considerations are made taking into account the nonlinear stiffness and ductility class of the system. The typology of NSPA pushover surface is derived based on the generalized model of the system response through ductility, ductility in hardening/softening zone and a coefficient of the relationship of stiffness in the nonlinear and linear domain, based on which it is possible to create systems of different stiffness, strength and ductility. The research presented in this paper defines the typological models of NSPA pushover surfaces which can be the base of further discussion on real pushover surfaces of 3D models of structures with a more complex, particularly non-symmetric geometry, as well as the variation of responses of the system due to bidirectional seismic actions.","PeriodicalId":40707,"journal":{"name":"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures","volume":"56 1","pages":"19-38"},"PeriodicalIF":0.4,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71225250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamic stiffness method in the vibration analysis of circular cylindrical shell 圆柱壳振动分析中的动刚度法
IF 0.4 Q4 ENGINEERING, CIVIL Pub Date : 1900-01-01 DOI: 10.5937/GRMK1603045K
Nevenka Kolarević, M. Nefovska-Danilović, M. Petronijević
In this paper the dynamic stiffness method is used for free vibration analysis of a circular cylindrical shell. The dynamic stiffness matrix is formulated on the base of the exact solution for free vibration of a circular cylindrical shell according to the Flugge thin shell theory. The matrix is frequency dependent and, besides the stiffness, includes inertia and damping effects. The derived dynamic stiffness matrix is implemented in the code developed in a Matlab program for computing natural frequencies and mode shapes of a circular cylindrical shell. Several numerical examples are carried out. The obtained results are validated against the results obtained by using the commercial finite element program Abaqus as well as the available analytical solutions from the literature.
本文将动刚度法应用于圆柱壳的自由振动分析。根据fluge薄壳理论,在圆柱壳自由振动精确解的基础上,建立了圆柱壳的动刚度矩阵。该矩阵是频率相关的,除了刚度,还包括惯性和阻尼效应。推导出的动力刚度矩阵在计算圆柱壳固有频率和振型的Matlab程序中实现。给出了几个数值算例。所得结果与利用商业有限元程序Abaqus得到的结果以及文献中可用的解析解进行了验证。
{"title":"Dynamic stiffness method in the vibration analysis of circular cylindrical shell","authors":"Nevenka Kolarević, M. Nefovska-Danilović, M. Petronijević","doi":"10.5937/GRMK1603045K","DOIUrl":"https://doi.org/10.5937/GRMK1603045K","url":null,"abstract":"In this paper the dynamic stiffness method is used for free vibration analysis of a circular cylindrical shell. The dynamic stiffness matrix is formulated on the base of the exact solution for free vibration of a circular cylindrical shell according to the Flugge thin shell theory. The matrix is frequency dependent and, besides the stiffness, includes inertia and damping effects. The derived dynamic stiffness matrix is implemented in the code developed in a Matlab program for computing natural frequencies and mode shapes of a circular cylindrical shell. Several numerical examples are carried out. The obtained results are validated against the results obtained by using the commercial finite element program Abaqus as well as the available analytical solutions from the literature.","PeriodicalId":40707,"journal":{"name":"Gradevnski Materijiali I Konstrukcije-Building Materials and Structures","volume":"59 1","pages":"45-61"},"PeriodicalIF":0.4,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71225815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
期刊
Gradevnski Materijiali I Konstrukcije-Building Materials and Structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1