首页 > 最新文献

ГОРЕНИЕ И ПЛАЗМОХИМИЯ最新文献

英文 中文
THE CLEAN COMBUSTION OF SOLID FUEL USING A PLASMA-COAL BURNER 使用等离子体煤燃烧器清洁燃烧固体燃料
Pub Date : 2022-02-21 DOI: 10.18321/cpc484
M.N. Оrynbasar
Solid fuels have a great chance to take a leading position in the energy market in the future from an environmental and energy point of view. The development of science and technology makes it possible to use coal with minimal harmful emissions. Also, looking at a sufficient supply for the coming years can preserve the energy balance around the world. This type of solid fuel is the primary source of thermal power plants and can maintain a long-term stable price. To burn low-reactive fuels (coal), highly reactive fuels (fuel oil or natural gas) are used, leading to various environmental and economic costs, climate change, and polluting the environment by providing initiatives to find alternatives to clean-burning minimal financial outlay. One of the promising technologies presented at various international exhibitions and widely used in some countries is plasma technology. Burners running on fuel oil or gas are replaced by a plasma-coal burner, which gives low-temperature plasma using a plasma torch. The temperature of the plasma-air torch at the outlet of the plasma torch in conventional plasma burners can reach 5000 K, which allows you to destroy harmful substances in your area.
从环境和能源的角度来看,固体燃料有很大的机会在未来的能源市场中占据主导地位。科学技术的发展使使用有害排放物最少的煤成为可能。此外,着眼于未来几年的充足供应可以保持世界各地的能源平衡。这种类型的固体燃料是火力发电厂的主要来源,可以保持长期稳定的价格。为了燃烧低反应性燃料(煤),使用了高反应性燃料(燃料油或天然气),导致各种环境和经济成本,气候变化,并通过提供寻找清洁燃烧替代品的倡议来污染环境。等离子体技术是在各种国际展览会上展示并在一些国家得到广泛应用的有前途的技术之一。燃烧燃料油或天然气的燃烧器被等离子体-煤燃烧器取代,等离子体燃烧器使用等离子炬提供低温等离子体。在传统的等离子燃烧器中,等离子炬出口的等离子-空气炬的温度可以达到5000 K,可以摧毁你所在区域的有害物质。
{"title":"THE CLEAN COMBUSTION OF SOLID FUEL USING A PLASMA-COAL BURNER","authors":"M.N. Оrynbasar","doi":"10.18321/cpc484","DOIUrl":"https://doi.org/10.18321/cpc484","url":null,"abstract":"Solid fuels have a great chance to take a leading position in the energy market in the future from an environmental and energy point of view. The development of science and technology makes it possible to use coal with minimal harmful emissions. Also, looking at a sufficient supply for the coming years can preserve the energy balance around the world. This type of solid fuel is the primary source of thermal power plants and can maintain a long-term stable price. To burn low-reactive fuels (coal), highly reactive fuels (fuel oil or natural gas) are used, leading to various environmental and economic costs, climate change, and polluting the environment by providing initiatives to find alternatives to clean-burning minimal financial outlay. One of the promising technologies presented at various international exhibitions and widely used in some countries is plasma technology. Burners running on fuel oil or gas are replaced by a plasma-coal burner, which gives low-temperature plasma using a plasma torch. The temperature of the plasma-air torch at the outlet of the plasma torch in conventional plasma burners can reach 5000 K, which allows you to destroy harmful substances in your area.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"130 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115144362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NUMERICAL MODELING OF TEMPERATURE PLUME FORMATION OF NON-ISOTHERMAL LIQUID INJECTIONS 非等温液体注入温度羽流形成的数值模拟
Pub Date : 2022-02-21 DOI: 10.18321/cpc482
S. Bolegenova, A. Askarova, Shynar Ospanova, A. Aldiyarova
This paper presents the results of computational experiments to study the formation of a spray and a temperature plume of non-isothermal liquid injections under high turbulence. Numerical modeling of atomization and combustion of liquid fuel injections and the influence of the initial gas temperature in the combustion chamber on these processes has been carried out. The temperature in the combustion chamber varied from 700 K to 1500 K for two types of liquid fuels: octane and dodecane. The distributions of liquid fuel droplets along the radii and temperature at various points in time are constructed. The influence of the initial temperature on the concentration characteristics of various types of fuel is revealed. As a result, it was found that at a pressure of over 80 bar with high turbulence, the gas temperature equal to 900 K was taken as optimal. At this temperature, the chamber is heated to high temperatures and the concentration of the resulting reaction products is the lowest. The obtained results can be applied in the construction of the liquid fuels’ combustion theory and will contribute to a deeper understanding of the complex physical and chemical phenomena that occur in combustion chambers.
本文介绍了高紊流条件下非等温液体注入射流和温度羽流形成的计算实验结果。本文对喷射液体燃料的雾化和燃烧过程进行了数值模拟,并对燃烧室初始气体温度对这些过程的影响进行了数值模拟。对于辛烷和十二烷这两种液体燃料,燃烧室的温度从700 K到1500 K不等。构造了燃料液滴在不同时间点沿半径和温度的分布。揭示了初始温度对各类燃料浓度特性的影响。结果发现,在压力大于80bar且湍流度高的情况下,以900k的气体温度为最优。在这个温度下,腔室被加热到高温,所得到的反应产物的浓度最低。所得结果可应用于液体燃料燃烧理论的构建,有助于更深入地理解燃烧室中发生的复杂物理和化学现象。
{"title":"NUMERICAL MODELING OF TEMPERATURE PLUME FORMATION OF NON-ISOTHERMAL LIQUID INJECTIONS","authors":"S. Bolegenova, A. Askarova, Shynar Ospanova, A. Aldiyarova","doi":"10.18321/cpc482","DOIUrl":"https://doi.org/10.18321/cpc482","url":null,"abstract":"This paper presents the results of computational experiments to study the formation of a spray and a temperature plume of non-isothermal liquid injections under high turbulence. Numerical modeling of atomization and combustion of liquid fuel injections and the influence of the initial gas temperature in the combustion chamber on these processes has been carried out. The temperature in the combustion chamber varied from 700 K to 1500 K for two types of liquid fuels: octane and dodecane. The distributions of liquid fuel droplets along the radii and temperature at various points in time are constructed. The influence of the initial temperature on the concentration characteristics of various types of fuel is revealed. As a result, it was found that at a pressure of over 80 bar with high turbulence, the gas temperature equal to 900 K was taken as optimal. At this temperature, the chamber is heated to high temperatures and the concentration of the resulting reaction products is the lowest. The obtained results can be applied in the construction of the liquid fuels’ combustion theory and will contribute to a deeper understanding of the complex physical and chemical phenomena that occur in combustion chambers.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"305 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116221534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SOOT FORMATION DURING THE COMBUSTION OF HYDROCARBONS IN AN ELECTRIC FIELD 在电场中碳氢化合物燃烧时形成的烟尘
Pub Date : 2022-02-21 DOI: 10.18321/cpc480
Z. Mansurov
In this mini review, dedicated to the 75th anniversary of a prominent scientist in the field of plasma chemistry, Professor Vladimir Efremovich Messerle, soot formation during the combustion of hydrocarbons in an electric field is considered. This is a historical excursus of research on the combustion of hydrocarbons in an electric field.
为了纪念等离子体化学领域的杰出科学家Vladimir Efremovich Messerle教授诞辰75周年,本文讨论了碳氢化合物在电场中燃烧时形成的煤烟。这是关于在电场中碳氢化合物燃烧的研究的历史综述。
{"title":"SOOT FORMATION DURING THE COMBUSTION OF HYDROCARBONS IN AN ELECTRIC FIELD","authors":"Z. Mansurov","doi":"10.18321/cpc480","DOIUrl":"https://doi.org/10.18321/cpc480","url":null,"abstract":"In this mini review, dedicated to the 75th anniversary of a prominent scientist in the field of plasma chemistry, Professor Vladimir Efremovich Messerle, soot formation during the combustion of hydrocarbons in an electric field is considered. This is a historical excursus of research on the combustion of hydrocarbons in an electric field.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115975492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLASMA TECHNOLOGIES IN THE PROBLEM OF OBTAINING «MORE THAN GREEN HYDROGEN» 等离子体技术在获得“绿色氢”方面的问题
Pub Date : 2022-02-21 DOI: 10.18321/cpc478
V. Zhovtyansky, M. Ostapchuk
Among the fire methods of various carbonaceous wastes processing, the most common are currently high-temperature technologies for their gasification with the production of hydrogen in gasification products. In terms of the prospects for decarbonization of sectors of the economy, the use of such technologies is carbon-negative, because otherwise waste will rot in landfills and emit methane for 20 years – a greenhouse gas that is 20 times more active than carbon dioxide in terms of climate change. Thus, the carbon contribution is defined as negative in the equivalent of 188 kg of carbon dioxide per MJ compared to 20 kg for hydrogen obtained from carbon and zero for standard green hydrogen. This allowed the authors of some developments to classify the hydrogen obtained from waste as greener than green. The prospects of application of plasma technologies for hydrogen production in relation to the tasks of hydrogen energy in terms of their energy efficiency are discussed on the examples of gasification of sewage sludges and rubber crumbs of worn tires. The analysis of existing empirical dependences for determination of thermophysical characteristics of a wide range of combustible substances is carried out and the most acceptable of them for those types of carbonaceous raw materials which were subjected to gasification in the present work are selected. 
在各种含碳废物处理的方法中,目前最常见的是高温气化技术,气化产物产氢。就经济部门脱碳的前景而言,使用这些技术是负碳的,因为否则废物将在垃圾填埋场腐烂并在20年内排放甲烷-一种在气候变化方面比二氧化碳活跃20倍的温室气体。因此,碳贡献被定义为负,相当于每兆焦耳产生188公斤二氧化碳,而从碳中获得的氢为20公斤,标准绿色氢为零。这使得一些开发的作者将从废物中获得的氢分类为比绿色更环保。以污水污泥和废旧轮胎橡胶屑的气化为例,从氢能源效率的角度讨论了等离子体制氢技术的应用前景。对测定各种可燃物质的热物理特性的现有经验依赖性进行了分析,并对在本工作中进行气化的那些类型的含碳原料选择了最可接受的依赖性。
{"title":"PLASMA TECHNOLOGIES IN THE PROBLEM OF OBTAINING «MORE THAN GREEN HYDROGEN»","authors":"V. Zhovtyansky, M. Ostapchuk","doi":"10.18321/cpc478","DOIUrl":"https://doi.org/10.18321/cpc478","url":null,"abstract":"Among the fire methods of various carbonaceous wastes processing, the most common are currently high-temperature technologies for their gasification with the production of hydrogen in gasification products. In terms of the prospects for decarbonization of sectors of the economy, the use of such technologies is carbon-negative, because otherwise waste will rot in landfills and emit methane for 20 years – a greenhouse gas that is 20 times more active than carbon dioxide in terms of climate change. Thus, the carbon contribution is defined as negative in the equivalent of 188 kg of carbon dioxide per MJ compared to 20 kg for hydrogen obtained from carbon and zero for standard green hydrogen. This allowed the authors of some developments to classify the hydrogen obtained from waste as greener than green. The prospects of application of plasma technologies for hydrogen production in relation to the tasks of hydrogen energy in terms of their energy efficiency are discussed on the examples of gasification of sewage sludges and rubber crumbs of worn tires. The analysis of existing empirical dependences for determination of thermophysical characteristics of a wide range of combustible substances is carried out and the most acceptable of them for those types of carbonaceous raw materials which were subjected to gasification in the present work are selected.\u0000 ","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117339738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
PLASMA-FUEL SYSTEMS AND PRINCIPLES OF THEIR FUNCTIONING 等离子燃料系统及其工作原理
Pub Date : 2022-02-21 DOI: 10.18321/cpc481
O. Lavrichshev, A. Ustimenko
This article presents the main types of plasma-fuel systems and the principles of their operation, which provide environmental and economic benefits compared to traditional fuel-use technologies. In plasma-fuel systems, coal of any quality is upgraded before it is burned. In general, a plasma-fuel system is a fuel device (a device into which fuel is supplied) with a plasma source. In plasma-fuel systems, the processes of plasma preparation and/or processing of solid fuels are carried out. The basic principle of the operation of plasma-fuel systems is the organization of electrothermochemical preparation and/or processing of coal dust in electric arc plasma. The use of plasma-fuel systems makes it possible to expand the range of coals burned in the same boiler and, ultimately, reduce the sensitivity of pulverized coal boilers to fuel quality. It is shown that an important advantage of the plasma technology is the quick payback and low cost of its implementation, while reducing emissions of nitrogen oxides, sulfur and vanadium pentoxide and fuel burnout during plasma stabilization of a pulverized coal flame. This makes them practically the only real means of improving the environmental and economic efficiency of using solid fuels and replacing scarce and expensive fuel oil in the fuel balance of TPPs in the required volumes. 
本文介绍了等离子体燃料系统的主要类型及其工作原理,与传统燃料利用技术相比,等离子体燃料系统具有环境效益和经济效益。在等离子燃料系统中,任何质量的煤在燃烧前都会被升级。一般来说,等离子体燃料系统是一种带有等离子体源的燃料装置(向其提供燃料的装置)。在等离子体燃料系统中,进行等离子体制备和/或固体燃料加工的过程。等离子体燃料系统运行的基本原理是组织电弧等离子体中的电热化学制备和/或煤尘处理。等离子燃料系统的使用可以扩大在同一锅炉中燃烧的煤的范围,并最终降低煤粉锅炉对燃料质量的敏感性。结果表明,等离子体稳定煤粉火焰的一个重要优势是投资回报快,成本低,同时减少了氮氧化物、硫和五氧化钒的排放,减少了燃料的燃尽。这使它们实际上成为提高使用固体燃料的环境和经济效率,并在所需数量的TPPs燃料平衡中取代稀缺和昂贵的燃料油的唯一真正手段。
{"title":"PLASMA-FUEL SYSTEMS AND PRINCIPLES OF THEIR FUNCTIONING","authors":"O. Lavrichshev, A. Ustimenko","doi":"10.18321/cpc481","DOIUrl":"https://doi.org/10.18321/cpc481","url":null,"abstract":"This article presents the main types of plasma-fuel systems and the principles of their operation, which provide environmental and economic benefits compared to traditional fuel-use technologies. In plasma-fuel systems, coal of any quality is upgraded before it is burned. In general, a plasma-fuel system is a fuel device (a device into which fuel is supplied) with a plasma source. In plasma-fuel systems, the processes of plasma preparation and/or processing of solid fuels are carried out. The basic principle of the operation of plasma-fuel systems is the organization of electrothermochemical preparation and/or processing of coal dust in electric arc plasma. The use of plasma-fuel systems makes it possible to expand the range of coals burned in the same boiler and, ultimately, reduce the sensitivity of pulverized coal boilers to fuel quality. It is shown that an important advantage of the plasma technology is the quick payback and low cost of its implementation, while reducing emissions of nitrogen oxides, sulfur and vanadium pentoxide and fuel burnout during plasma stabilization of a pulverized coal flame. This makes them practically the only real means of improving the environmental and economic efficiency of using solid fuels and replacing scarce and expensive fuel oil in the fuel balance of TPPs in the required volumes.\u0000 ","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130070741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PLASMA ТECHNOLOGY AND EQUIPMENT FOR MEDICAL WASTE PROCESSING 血浆Тechnology及医疗废物处理设备
Pub Date : 2022-02-21 DOI: 10.18321/cpc477
A. Mosse, G. Paskalov
In the technology of processing medical waste, including waste generated during a pandemic, the main generally accepted methods are thermal, using fuel or plasma furnaces, for combustion in an oxygen-containing environment or for pyrolysis in a reducing atmosphere to produce synthesis gas (H2 and CO) that can be further used for the chemical industry or as a fuel. Moreover, direct combustion or pyrolysis of the initial solid waste, which ensures the gasification of its organic components, is usually only the first stage of the general technological process. In general, it consists of three stages. At the second stage, the gas products of the first stage are brought to a predetermined composition, at the third stage, the inorganic residue is neutralized - ash, the formation of which is up to 20% of unsorted medical waste. A promising option for the technology under consideration is the use of electric arc plasma installations. Compared to non-plasma furnaces, even those using intensive gas-dynamic operating modes, a number of significant advantages are achieved: a decrease in the volume of the furnace (while maintaining the productivity of raw materials) and a decrease in the volume of exhaust gases by about an order of magnitude with an increase in temperature in the reaction zone of the furnace to 2000–2300 °C.
在处理医疗废物(包括大流行期间产生的废物)的技术中,普遍接受的主要方法是热能,使用燃料或等离子炉,在含氧环境中燃烧或在还原气氛中热解,以产生合成气(H2和CO),可进一步用于化学工业或作为燃料。此外,确保其有机成分气化的初始固体废物的直接燃烧或热解通常只是一般工艺过程的第一阶段。一般来说,它包括三个阶段。在第二阶段,将第一阶段的气体产物制成预定的成分,在第三阶段,将无机残留物中和-灰,其形成率高达未分类医疗废物的20%。正在考虑的技术的一个有前途的选择是使用电弧等离子装置。与非等离子体炉相比,即使是那些使用密集气体动态操作模式的炉,也实现了许多显著的优势:炉的体积减小(同时保持原材料的生产率),并且随着炉的反应区温度升高到2000-2300°C,废气体积减少了大约一个数量级。
{"title":"PLASMA ТECHNOLOGY AND EQUIPMENT FOR MEDICAL WASTE PROCESSING","authors":"A. Mosse, G. Paskalov","doi":"10.18321/cpc477","DOIUrl":"https://doi.org/10.18321/cpc477","url":null,"abstract":"In the technology of processing medical waste, including waste generated during a pandemic, the main generally accepted methods are thermal, using fuel or plasma furnaces, for combustion in an oxygen-containing environment or for pyrolysis in a reducing atmosphere to produce synthesis gas (H2 and CO) that can be further used for the chemical industry or as a fuel. Moreover, direct combustion or pyrolysis of the initial solid waste, which ensures the gasification of its organic components, is usually only the first stage of the general technological process. In general, it consists of three stages. At the second stage, the gas products of the first stage are brought to a predetermined composition, at the third stage, the inorganic residue is neutralized - ash, the formation of which is up to 20% of unsorted medical waste. A promising option for the technology under consideration is the use of electric arc plasma installations. Compared to non-plasma furnaces, even those using intensive gas-dynamic operating modes, a number of significant advantages are achieved: a decrease in the volume of the furnace (while maintaining the productivity of raw materials) and a decrease in the volume of exhaust gases by about an order of magnitude with an increase in temperature in the reaction zone of the furnace to 2000–2300 °C.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124686462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
НЕКОТОРЫЕ ПРОБЛЕМЫ ЭКОЛОГИЧНОГО СЖИГАНИЯ ВОДОУГОЛЬНЫХ СМЕСЕЙ 一些环境烧煤问题
Pub Date : 2021-12-26 DOI: 10.18321/cpc465
Зулхаир Аймухаметович Мансуров, В. Г. Сальников
Проведен анализ актуальных проблем декарбонизации связанный с выделением СО2 при горении угля, одного из основных видов топлива для энергетических установок в мире и в особенности в Казахстане, и перспективных путей решения связанных с этим экологических проблем. Рассмотрены способы переработки угольного топлива в виде водоугольной суспензии. Описана экспериментальная установка по эмульгированию дизельного топлива и характеристики выбросов при его использовании. Расмотрен механизм горения водоугольной суспензии и возможность эффективного снижения эмиссии СО2 за счет ее использования.
分析了煤炭燃烧时二氧化碳脱碳的实际问题,这是世界上最重要的能源设施,尤其是哈萨克斯坦的主要燃料之一,以及解决这些环境问题的可行方法。目前正在考虑将煤燃料转化为水悬浮液的方法。描述了一种实验性的柴油乳化装置,以及使用时排放的特征。考虑到水悬浮液燃烧的机制,以及利用它有效降低二氧化碳排放的能力。
{"title":"НЕКОТОРЫЕ ПРОБЛЕМЫ ЭКОЛОГИЧНОГО СЖИГАНИЯ ВОДОУГОЛЬНЫХ СМЕСЕЙ","authors":"Зулхаир Аймухаметович Мансуров, В. Г. Сальников","doi":"10.18321/cpc465","DOIUrl":"https://doi.org/10.18321/cpc465","url":null,"abstract":"Проведен анализ актуальных проблем декарбонизации связанный с выделением СО2 при горении угля, одного из основных видов топлива для энергетических установок в мире и в особенности в Казахстане, и перспективных путей решения связанных с этим экологических проблем. Рассмотрены способы переработки угольного топлива в виде водоугольной суспензии. Описана экспериментальная установка по эмульгированию дизельного топлива и характеристики выбросов при его использовании. Расмотрен механизм горения водоугольной суспензии и возможность эффективного снижения эмиссии СО2 за счет ее использования.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121291088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ПРОБЛЕМЫ И ВЫЗОВЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ 氢能源的挑战和挑战
Pub Date : 2021-12-26 DOI: 10.18321/cpc462
Владимир Сергеевич Арутюнов
Для существенного снижения глобальной эмиссии СО2 за счет использования в качестве энергоносителя водорода его производство должно достигать не менее 1 млрд т/г. Такой объем водорода не может быть получен за счет возобновляемых источников энергии, гидроэнергетики или атомной энергетики. До промышленного освоения энергии термоядерного синтеза единственным реальным источником такого объема водорода может быть только конверсия природного газа. Поэтому наиболее эффективный способ снижения углеродного следа энергетики – повышение эффективности использования углеводородов, в том числе их конверсии в водород. Как энергоноситель водород обладает серьезными недостатками: низким объемным содержанием энергии, большими затратами энергии на его получение, сжижение и компримирование, высокой взрывоопасностью. На начальном этапе развития водородной энергетики наиболее реальный путь преодоления сложных проблем транспортировки и хранения водорода – его рассредоточенное малотоннажное производство непосредственно в местах потребления.
为了大幅减少全球二氧化碳排放,使用氢作为能源必须达到至少10亿吨/ g。这种程度的氢不能通过可再生能源、水电或核能来产生。在聚变能源的工业开发之前,只有天然气的转化才能真正产生这种氢。因此,减少能源碳足迹最有效的方法是提高碳氢化合物的使用效率,包括将其转化为氢。作为一种能源载体,氢有严重的缺点:低容量能量,高能量消耗,燃烧和堆肥,高爆炸性。在氢的早期阶段,克服运输和储存氢的复杂问题的最现实的方法是直接在消费地点进行低吨生产。
{"title":"ПРОБЛЕМЫ И ВЫЗОВЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ","authors":"Владимир Сергеевич Арутюнов","doi":"10.18321/cpc462","DOIUrl":"https://doi.org/10.18321/cpc462","url":null,"abstract":"Для существенного снижения глобальной эмиссии СО2 за счет использования в качестве энергоносителя водорода его производство должно достигать не менее 1 млрд т/г. Такой объем водорода не может быть получен за счет возобновляемых источников энергии, гидроэнергетики или атомной энергетики. До промышленного освоения энергии термоядерного синтеза единственным реальным источником такого объема водорода может быть только конверсия природного газа. Поэтому наиболее эффективный способ снижения углеродного следа энергетики – повышение эффективности использования углеводородов, в том числе их конверсии в водород. Как энергоноситель водород обладает серьезными недостатками: низким объемным содержанием энергии, большими затратами энергии на его получение, сжижение и компримирование, высокой взрывоопасностью. На начальном этапе развития водородной энергетики наиболее реальный путь преодоления сложных проблем транспортировки и хранения водорода – его рассредоточенное малотоннажное производство непосредственно в местах потребления.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115897677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ОБЗОР РАБОТ ПО ПРИГОТОВЛЕНИЮ ВОДОУГОЛЬНОГО ТОПЛИВА И ЕГО СЖИГАНИЮ В КОТЛАХ МАЛОЙ МОЩНОСТИ 低功率锅炉燃油准备工作概述
Pub Date : 2021-12-26 DOI: 10.18321/cpc464
С В Алексеенко, Л. И. Мальцев, И. В. Кравченко, А.А. Дектерев, В. А. Кузнецов
В процессе обогащения углей образуются огромные объемы отходов, которые, как правило, выбрасываются в окружающее пространство, загрязняя его. При этом отходы могут содержать до 50 % углерода. Малая промышленная энергетика, муниципальные котельные используют преимущественно слоевое сжигание углей. При этом коэффициент выгорания углерода составляет 50–60%, и коэффициент полезного действия котлов нередко не превышает 60%, а их экологические показатели не удовлетворяют современным требованиям. Эффективным способом решения проблемы утилизации углеотходов может оказаться перевод котлов на сжигание углей в виде водоугольной суспензии (ВУС). В статье представлены результаты авторов по технологии приготовления водоугольного топлива (ВУТ) и его сжиганию в вихревых топках котлов. Представлены данные по новому оборудованию, необходимому для реализации технологии. Показано, что и рядовые угли, и антрацит, и угольные шламы, а также отходы углеобогащения могут служить основой для производства ВУТ. Приведены примеры опытно-промышленного применения водоугольной технологии. При этом коэффициент выгорания топлива достигает значений порядка 95%, а коэффициент полезного действия котлов превышает 85%.
在碳浓缩过程中,产生了大量的废物,通常会被倾倒到周围的环境中,污染。然而,废物可以含有多达50%的碳。小型工业能源,市政锅炉主要使用层煤燃烧。碳燃烧系数为50 - 60%,锅炉效率通常不超过60%,环境指标也不符合现代要求。解决碳处理问题的有效方法可能是将锅炉转化为水悬浮液燃烧煤。这篇文章展示了作者在锅炉涡流中燃烧燃煤技术的结果。下面是实现这项技术所需的新设备的数据。这表明,普通煤、炭疽病、煤渣和碳废料都可以作为基础。以下是水煤技术的实业性应用的例子。燃料燃烧系数高达95%,锅炉效率超过85%。
{"title":"ОБЗОР РАБОТ ПО ПРИГОТОВЛЕНИЮ ВОДОУГОЛЬНОГО ТОПЛИВА И ЕГО СЖИГАНИЮ В КОТЛАХ МАЛОЙ МОЩНОСТИ","authors":"С В Алексеенко, Л. И. Мальцев, И. В. Кравченко, А.А. Дектерев, В. А. Кузнецов","doi":"10.18321/cpc464","DOIUrl":"https://doi.org/10.18321/cpc464","url":null,"abstract":"В процессе обогащения углей образуются огромные объемы отходов, которые, как правило, выбрасываются в окружающее пространство, загрязняя его. При этом отходы могут содержать до 50 % углерода. Малая промышленная энергетика, муниципальные котельные используют преимущественно слоевое сжигание углей. При этом коэффициент выгорания углерода составляет 50–60%, и коэффициент полезного действия котлов нередко не превышает 60%, а их экологические показатели не удовлетворяют современным требованиям. Эффективным способом решения проблемы утилизации углеотходов может оказаться перевод котлов на сжигание углей в виде водоугольной суспензии (ВУС). В статье представлены результаты авторов по технологии приготовления водоугольного топлива (ВУТ) и его сжиганию в вихревых топках котлов. Представлены данные по новому оборудованию, необходимому для реализации технологии. Показано, что и рядовые угли, и антрацит, и угольные шламы, а также отходы углеобогащения могут служить основой для производства ВУТ. Приведены примеры опытно-промышленного применения водоугольной технологии. При этом коэффициент выгорания топлива достигает значений порядка 95%, а коэффициент полезного действия котлов превышает 85%.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126492053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ИССЛЕДОВАНИЕ ВОСПЛАМЕНЕНИЯ И СЖИГАНИЯ УГОЛЬНОГО ТОПЛИВА С МЕХАНО – И ПЛАЗМОХИМИЧЕСКОЙ АКТИВАЦИЕЙ ПРИМЕНИТЕЛЬНО К ЭНЕРГЕТИКЕ 机械-等离子化学活化燃煤燃烧研究
Pub Date : 2021-12-25 DOI: 10.18321/cpc461
Сергей Викторович Алексеенко, А. П. Бурдуков, Е. Б. Бутаков, А. С. Почтарь
Данная работа представляет результаты экспериментальных исследований и промышленного применения перспективных способов воспламенения и горения угольного топлива с использованием механохимической и плазменной активации. Экспериментальные исследования проводились на стенде тепловой мощностью до 5 МВт. Получены экспериментальные данные по реализации процесса горения и воспламенения с использованием технологий механоактивации и высоковольтного плазмотрона переменного тока. Проведено внедрение и первые промышленные испытания высоковольтного плазмотрона переменного тока на реальном энергетическом котле ТП-10 производительностью 220 тонн пара в час с замещением газа и мазута углем в процессе розжига котла.
这项工作是通过机械化学和等离子活化方法进行实验研究和工业应用的结果。实验研究是在一个高达5兆瓦的热板上进行的。通过机械激活技术和高压交流等离子体加速器实现燃烧和燃烧的实验数据。在tp -10实能锅炉上进行了高压交流等离子体的首次工业试验,每小时产生220吨蒸汽,取代燃气和燃煤。
{"title":"ИССЛЕДОВАНИЕ ВОСПЛАМЕНЕНИЯ И СЖИГАНИЯ УГОЛЬНОГО ТОПЛИВА С МЕХАНО – И ПЛАЗМОХИМИЧЕСКОЙ АКТИВАЦИЕЙ ПРИМЕНИТЕЛЬНО К ЭНЕРГЕТИКЕ","authors":"Сергей Викторович Алексеенко, А. П. Бурдуков, Е. Б. Бутаков, А. С. Почтарь","doi":"10.18321/cpc461","DOIUrl":"https://doi.org/10.18321/cpc461","url":null,"abstract":"Данная работа представляет результаты экспериментальных исследований и промышленного применения перспективных способов воспламенения и горения угольного топлива с использованием механохимической и плазменной активации. Экспериментальные исследования проводились на стенде тепловой мощностью до 5 МВт. Получены экспериментальные данные по реализации процесса горения и воспламенения с использованием технологий механоактивации и высоковольтного плазмотрона переменного тока. Проведено внедрение и первые промышленные испытания высоковольтного плазмотрона переменного тока на реальном энергетическом котле ТП-10 производительностью 220 тонн пара в час с замещением газа и мазута углем в процессе розжига котла.","PeriodicalId":414729,"journal":{"name":"ГОРЕНИЕ И ПЛАЗМОХИМИЯ","volume":"160 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121485233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ГОРЕНИЕ И ПЛАЗМОХИМИЯ
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1