首页 > 最新文献

Journal of Dinda : Data Science, Information Technology, and Data Analytics最新文献

英文 中文
An Expert System for Diagnosing the Impact of Traffic Accidents using the Forward Chaining Method 基于前向链法的交通事故影响诊断专家系统
Pub Date : 2023-02-01 DOI: 10.20895/dinda.v3i1.767
Akbar Yusuf, Jonathan Indra Chelidivano, Tavany Amalia Rizky, Yanuar Sabikhi, Sudianto Sudianto
Unexpected events that we often hear about are traffic accidents caused by many factors. Accidents also cause impacts in terms of health. This study aims to provide information regarding the effects of traffic accidents in terms of health based on some visible symptoms that emerged from the victim's body at the scene using an expert system. The Expert System is designed on a website-based application. The forward chaining method is used to get a conclusion based on the facts. The results of this research users gain knowledge about the impact of traffic accidents and the diagnosis on the victim's body that is close to the knowledge of experts with accuracy 87.5%. The website is designed to be used as a guide for users to be able to provide appropriate first aid to accident victims.
我们经常听到的意外事件是由许多因素引起的交通事故。事故也对健康造成影响。本研究旨在利用专家系统,根据现场受害者身上出现的一些可见症状,提供有关交通事故对健康影响的信息。专家系统是在一个基于网站的应用程序上设计的。采用前向链法,根据事实得出结论。本研究的结果,用户获得了关于交通事故的影响和对受害者身体的诊断的知识,接近专家的知识,准确率为87.5%。本网站旨在为使用者提供指引,以便为意外受害者提供适当的急救服务。
{"title":"An Expert System for Diagnosing the Impact of Traffic Accidents using the Forward Chaining Method","authors":"Akbar Yusuf, Jonathan Indra Chelidivano, Tavany Amalia Rizky, Yanuar Sabikhi, Sudianto Sudianto","doi":"10.20895/dinda.v3i1.767","DOIUrl":"https://doi.org/10.20895/dinda.v3i1.767","url":null,"abstract":"Unexpected events that we often hear about are traffic accidents caused by many factors. Accidents also cause impacts in terms of health. This study aims to provide information regarding the effects of traffic accidents in terms of health based on some visible symptoms that emerged from the victim's body at the scene using an expert system. The Expert System is designed on a website-based application. The forward chaining method is used to get a conclusion based on the facts. The results of this research users gain knowledge about the impact of traffic accidents and the diagnosis on the victim's body that is close to the knowledge of experts with accuracy 87.5%. The website is designed to be used as a guide for users to be able to provide appropriate first aid to accident victims.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121623320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prediction of Covid-19 Cases in Central Java using the Autoregressive (AR) Method 应用自回归(AR)方法预测中爪哇省Covid-19病例
Pub Date : 2023-02-01 DOI: 10.20895/dinda.v3i1.740
Tangguh Widodo, S. Maghfiroh, Surya Haganta Brema Ginting, Alif Aryaputra, Sudianto Sudianto
Since the beginning of the Covid-19 case in Indonesia in March 2020, more than 6 million confirmed cases had been confirmed. The rapid development of this case can be accessed through the covid19.go.id page. In Central Java province, confirmed cases as of July 6, 2022, reached 628,393 people, with the number of recovered patients reaching 594,783 people and the number of patients dying as many as 33,215 people. With this data, a prediction is needed to help the government anticipate an increase in Covid-19 cases in Central Java Province. This study aims to create a forecasting model using the Autoregressive (AR) method by optimizing the function parameters. Then Mean Squared Error (MSE) to analyze the results of forecasting data errors. The results are the best parameter functions on AR (30) with the smallest MSE. Furthermore, predictions are made from July 1 to August 30, 2022, showing an increase in cases
自2020年3月印度尼西亚出现新冠肺炎病例以来,确诊病例已超过600万例。我们可以通过covid - 19了解到这一病例的快速发展。页面id。截至2022年7月6日,中爪哇省确诊病例达628393人,康复人数达594783人,死亡人数达33215人。根据这些数据,需要进行预测,以帮助政府预测中爪哇省Covid-19病例的增加。本研究旨在通过优化函数参数,利用自回归(AR)方法建立预测模型。然后用均方误差(MSE)对预测结果进行数据误差分析。结果表明,在最小均方差下,AR(30)的参数函数是最佳的。此外,从2022年7月1日到8月30日的预测显示,病例数有所增加
{"title":"Prediction of Covid-19 Cases in Central Java using the Autoregressive (AR) Method","authors":"Tangguh Widodo, S. Maghfiroh, Surya Haganta Brema Ginting, Alif Aryaputra, Sudianto Sudianto","doi":"10.20895/dinda.v3i1.740","DOIUrl":"https://doi.org/10.20895/dinda.v3i1.740","url":null,"abstract":"Since the beginning of the Covid-19 case in Indonesia in March 2020, more than 6 million confirmed cases had been confirmed. The rapid development of this case can be accessed through the covid19.go.id page. In Central Java province, confirmed cases as of July 6, 2022, reached 628,393 people, with the number of recovered patients reaching 594,783 people and the number of patients dying as many as 33,215 people. With this data, a prediction is needed to help the government anticipate an increase in Covid-19 cases in Central Java Province. This study aims to create a forecasting model using the Autoregressive (AR) method by optimizing the function parameters. Then Mean Squared Error (MSE) to analyze the results of forecasting data errors. The results are the best parameter functions on AR (30) with the smallest MSE. Furthermore, predictions are made from July 1 to August 30, 2022, showing an increase in cases","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117157768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Diabetes Diagnostic Expert System using Website-Based Forward Chaining Method 基于网站前向链接方法的糖尿病诊断专家系统
Pub Date : 2023-02-01 DOI: 10.20895/dinda.v3i1.752
Tiara Khumaira Putri, Mahda Laina Arnumukti, K. Khatimah, Egidya Zalsabila, Sudianto Sudianto
Diabetes is a chronic disease. The World Health Organization predicts that Indonesia's number of diabetic patients will continue to increase significantly to 16.7 million in 2045. As early prevention, early diagnosis is needed to anticipate more severe diabetes. This study aims to build an expert system for detecting diabetes using a web-based forward chaining method. The expert system is built by collecting indications from experts by collecting facts using the forward chaining method. Furthermore, judging by the unhealthy lifestyle of many people who consult with hospitals or health workers. From the results obtained, the system can work well based on knowledge from experts
糖尿病是一种慢性病。世界卫生组织预测,到2045年,印度尼西亚的糖尿病患者数量将继续大幅增加,达到1670万。作为早期预防,早期诊断需要预测更严重的糖尿病。本研究旨在建立一个基于网络的前向链方法的糖尿病检测专家系统。该专家系统采用前向链的方法,通过收集事实,收集专家的指示来构建。此外,从许多向医院或卫生工作者咨询的人的不健康生活方式来看。从结果来看,该系统在专家知识的基础上可以很好地工作
{"title":"Diabetes Diagnostic Expert System using Website-Based Forward Chaining Method","authors":"Tiara Khumaira Putri, Mahda Laina Arnumukti, K. Khatimah, Egidya Zalsabila, Sudianto Sudianto","doi":"10.20895/dinda.v3i1.752","DOIUrl":"https://doi.org/10.20895/dinda.v3i1.752","url":null,"abstract":"Diabetes is a chronic disease. The World Health Organization predicts that Indonesia's number of diabetic patients will continue to increase significantly to 16.7 million in 2045. As early prevention, early diagnosis is needed to anticipate more severe diabetes. This study aims to build an expert system for detecting diabetes using a web-based forward chaining method. The expert system is built by collecting indications from experts by collecting facts using the forward chaining method. Furthermore, judging by the unhealthy lifestyle of many people who consult with hospitals or health workers. From the results obtained, the system can work well based on knowledge from experts","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133802873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Pengembangan Aplikasi Pengelolaan Sampah Berbasis Android Studi Kasus Bank Sampah Desa Kalibagor 以Android为基础的垃圾管理应用程序的开发研究了Kalibagor村垃圾银行的案例
Pub Date : 2022-08-02 DOI: 10.20895/dinda.v2i2.741
Gita Fadila Fitriana, Adinda Hashina, Nia Annisa Ferani Tanjung
Penumpukan sampah tercatat mencapai 625 juta liter dari jumlah penduduk pada tahun 2012 di Indonesia menurut Kementerian Lingkungan Hidup. Dari hal ini Bank Sampah menjadi sebuah solusi bagi pemerintah dalam penanggulangan pengelolaan sampah. Namun dalam berjalannya Bank Sampah, terdapat beberapa kendala yang dialami. Seperti yang dialami oleh bank sampah desa Kalibagor kecamatan Kalibagor Kabupaten Banyumas. Bank Sampah yang ada di desa Kalibagor ini sudah berjalan sejak oktober tahun 2020. Dalam menjalankan Bank Sampah ini KSM (Kelompok Swadaya Masyarakat) selaku petugas Bank Sampah mengalami kesulitan yaitu karena Bank Sampah masih melakukan pencatatan transaksi secara manual sehingga meningkatkan resiko kehilangan data. Maka dari itu diperlukan aplikasi yang dapat mencatat berbagai transaksi yang ada di Bank Sampah berbasis android. Dalam pengembangan aplikasi ini akan menggunakan metode Kanban. Hasil yang diperoleh dari pengembangan aplikasi ini adalah berhasil membangun aplikasi berbasis android menggunakan metode Kanban yang dapat mencatat berbagai transaksi di dalam Bank Sampah desa Kalibagor sehingga dapat membantu petugas KSM dalam pencatatan transaksi Bank Sampah. Selain itu hasil dari pengujian aplikasi yang melibatkan lima responden menujukan bahwa aplikasi dapat berjalan sesuai dengan harapan dengan hasil kelayakan 100% berhasil.
据环境部(environment ministry of environment)称,2012年印尼有创纪录的垃圾堆积人数为1.25亿升。垃圾银行成为政府管理垃圾的解决方案。但在垃圾银行的困境中,存在着一些障碍。正如班尤马斯区卡利巴戈尔村垃圾银行所遭遇的那样。这个垃圾银行从2020年10月就开始运作了。在经营这家垃圾银行KSM(非政府组织)时,垃圾银行工作人员遇到了困难,因为垃圾银行仍在手工进行交易,增加了丢失数据的风险。这就是为什么需要一个应用程序来记录android银行的各种交易。在开发过程中,该应用程序将使用坎班方法。应用程序开发的结果是,它成功地使用Kanban方法创建了一个android基应用程序,可以在Kalibagor村垃圾银行记录不同的交易,从而在垃圾银行交易日志中帮助KSM官员。除此之外,有五名受访者参与的应用程序测试的结果表明,该应用程序可以与预期的结果保持100%的可行性。
{"title":"Pengembangan Aplikasi Pengelolaan Sampah Berbasis Android Studi Kasus Bank Sampah Desa Kalibagor","authors":"Gita Fadila Fitriana, Adinda Hashina, Nia Annisa Ferani Tanjung","doi":"10.20895/dinda.v2i2.741","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.741","url":null,"abstract":"Penumpukan sampah tercatat mencapai 625 juta liter dari jumlah penduduk pada tahun 2012 di Indonesia menurut Kementerian Lingkungan Hidup. Dari hal ini Bank Sampah menjadi sebuah solusi bagi pemerintah dalam penanggulangan pengelolaan sampah. Namun dalam berjalannya Bank Sampah, terdapat beberapa kendala yang dialami. Seperti yang dialami oleh bank sampah desa Kalibagor kecamatan Kalibagor Kabupaten Banyumas. Bank Sampah yang ada di desa Kalibagor ini sudah berjalan sejak oktober tahun 2020. Dalam menjalankan Bank Sampah ini KSM (Kelompok Swadaya Masyarakat) selaku petugas Bank Sampah mengalami kesulitan yaitu karena Bank Sampah masih melakukan pencatatan transaksi secara manual sehingga meningkatkan resiko kehilangan data. Maka dari itu diperlukan aplikasi yang dapat mencatat berbagai transaksi yang ada di Bank Sampah berbasis android. Dalam pengembangan aplikasi ini akan menggunakan metode Kanban. Hasil yang diperoleh dari pengembangan aplikasi ini adalah berhasil membangun aplikasi berbasis android menggunakan metode Kanban yang dapat mencatat berbagai transaksi di dalam Bank Sampah desa Kalibagor sehingga dapat membantu petugas KSM dalam pencatatan transaksi Bank Sampah. Selain itu hasil dari pengujian aplikasi yang melibatkan lima responden menujukan bahwa aplikasi dapat berjalan sesuai dengan harapan dengan hasil kelayakan 100% berhasil.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116771047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementasi Augmented Reality untuk Pengembangan Aplikasi Pengenalan Senjata Tradisional Kujang
Pub Date : 2022-07-28 DOI: 10.20895/dinda.v2i2.704
Muhammad Azhar Khairi, Tb. Ai Munandar, S. Setiawati
Kujang merupakan salah satu senjata tradisional yang menjadi ciri khas Jawa Barat. Namun masih banyak masyarakat yang belum mengetahui makna dan jenis-jenis dari kujang. Untuk mengenal kujang saat ini sangat sulit, dikarenakan sedikitnya masyarakat yang mempunyai atau mengkoleksi kujang. Dan juga tidak semua museum mempunyai jenis-jenis kujang yang lengkap, seperti Museum Pusaka Taman Mini Indonesia Indah (TMII). Museum tersebut hanya memiliki 4 jenis kujang yang dapat diperkenalkan. Informasi yang diberikan kepada pengujung juga tidak terlalu banyak. Penelitian ini bertujuan untuk mengembangkan aplikasi pengenalan senjata tradisional kujang menggunakan augmented reality, sehingga memudahkan pengunjung Museum Pusaka Taman Mini Indonesia Indah (TMII) untuk mengenal kujang dengan melihat bentuk secara 3D serta menambahkan materi mengenai kujang. Penggunaan aplikasi augmented reality ini menggunakan marker yang nantinya akan dideteksi oleh kamera dan memunculkan objek 3D. Pembuatan aplikasi augmented reality ini menggunakan tools vuforia. Hasil penelitian memperlihatkan bahwa aplikasi yang dikembangkan sangat diterima dengan baik oleh pengguna. Hal ini diperlihatkan dengan nilai system usability scale dari 58 responden yang menghasilkan skor rata-rata SUS sebesar 82,97. Skor tersebut termasuk ke dalam grade scale B, adjective rating good, dan acceptable ranges high. Kata kunci: kujang, augmented reality, marker, vuforia.
Kujang是西爪哇的一种传统武器。然而,仍然有许多社会不知道kujang的含义和类型。如今,要了解kujang是困难的,因为社会中很少有人拥有或收藏kujang。也不是所有的博物馆都有完整的kujang博物馆,比如美丽的印尼迷你花园遗产博物馆(TMII)。该博物馆只有四种可引进的kujang类型。给叶的信息也不多。这项研究的目的是开发一种传统的武器识别应用,使用增强的现实,使游客能够通过观看3D形状和添加与kujang有关的材料来了解kujang。使用这个增强现实的应用程序,使用一个标记,后来将被摄像机检测到,并显示出3D对象。使用vuforia工具创建这个增强现实的应用程序。研究结果表明,开发的应用程序被用户高度接受。结果显示,58名受访者的平均平均绩点为82:97。这些分数包括B级scale, adject评级良好,以及可接受的平均值高。关键词:kujang,增强现实,标记,vuforia。
{"title":"Implementasi Augmented Reality untuk Pengembangan Aplikasi Pengenalan Senjata Tradisional Kujang","authors":"Muhammad Azhar Khairi, Tb. Ai Munandar, S. Setiawati","doi":"10.20895/dinda.v2i2.704","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.704","url":null,"abstract":"Kujang merupakan salah satu senjata tradisional yang menjadi ciri khas Jawa Barat. Namun masih banyak masyarakat yang belum mengetahui makna dan jenis-jenis dari kujang. Untuk mengenal kujang saat ini sangat sulit, dikarenakan sedikitnya masyarakat yang mempunyai atau mengkoleksi kujang. Dan juga tidak semua museum mempunyai jenis-jenis kujang yang lengkap, seperti Museum Pusaka Taman Mini Indonesia Indah (TMII). Museum tersebut hanya memiliki 4 jenis kujang yang dapat diperkenalkan. Informasi yang diberikan kepada pengujung juga tidak terlalu banyak. Penelitian ini bertujuan untuk mengembangkan aplikasi pengenalan senjata tradisional kujang menggunakan augmented reality, sehingga memudahkan pengunjung Museum Pusaka Taman Mini Indonesia Indah (TMII) untuk mengenal kujang dengan melihat bentuk secara 3D serta menambahkan materi mengenai kujang. Penggunaan aplikasi augmented reality ini menggunakan marker yang nantinya akan dideteksi oleh kamera dan memunculkan objek 3D. Pembuatan aplikasi augmented reality ini menggunakan tools vuforia. Hasil penelitian memperlihatkan bahwa aplikasi yang dikembangkan sangat diterima dengan baik oleh pengguna. Hal ini diperlihatkan dengan nilai system usability scale dari 58 responden yang menghasilkan skor rata-rata SUS sebesar 82,97. Skor tersebut termasuk ke dalam grade scale B, adjective rating good, dan acceptable ranges high. \u0000Kata kunci: kujang, augmented reality, marker, vuforia.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128425777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sistem Rekomendasi Desain Website Berdasarkan Tingkat Kemiripan Menggunakan Euclidean Distance 基于欧几里得距离的相似程度的网站设计推荐系统
Pub Date : 2022-07-28 DOI: 10.20895/dinda.v2i2.543
Cahyani Ainun Awaliyah, Agi Prasetyadi, A. Junaidi
The more internet users, the more interest in creating websites for certain purposes. To create a website that can attract visitors, a good website design is required. Website design is an important element in making a website, because the design of a website will create its own impression and image for website users. One of the technological developments is artificial intelligence, namely the Recommendation System which is a computer technology that is able to provide recommendations for the layman, in this study a website design recommendation system based on the Euclidean distance assessment resulted in a "good" SUS (System Usability Scale) grade C “good”.
互联网用户越多,就越有兴趣为某些目的创建网站。要创建一个可以吸引访问者的网站,需要一个好的网站设计。网站设计是制作网站的重要元素,因为网站的设计会给网站用户创造自己的印象和形象。其中一项技术发展是人工智能,即推荐系统,这是一种能够为外行人提供推荐的计算机技术,在本研究中,基于欧几里得距离评估的网站设计推荐系统获得了“好”(系统可用性量表)C级“好”。
{"title":"Sistem Rekomendasi Desain Website Berdasarkan Tingkat Kemiripan Menggunakan Euclidean Distance","authors":"Cahyani Ainun Awaliyah, Agi Prasetyadi, A. Junaidi","doi":"10.20895/dinda.v2i2.543","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.543","url":null,"abstract":"The more internet users, the more interest in creating websites for certain purposes. To create a website that can attract visitors, a good website design is required. Website design is an important element in making a website, because the design of a website will create its own impression and image for website users. One of the technological developments is artificial intelligence, namely the Recommendation System which is a computer technology that is able to provide recommendations for the layman, in this study a website design recommendation system based on the Euclidean distance assessment resulted in a \"good\" SUS (System Usability Scale) grade C “good”.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126595549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sentiment Analysis Destinasi Wisata Berdasarkan Opini Masyarakat Menggunakan Naive Bayes 情感分析,以社区观点为基础的旅游目的地,使用天真的贝斯
Pub Date : 2022-07-28 DOI: 10.20895/dinda.v2i2.690
Rizki Alamsyah, Tb. Ai Munandar, Fata Nidaul Khasanah, Siti Setiawati
The topic used in this research is to discuss the problem of public opinion on social media related to tourist destinations in Bekasi Regency by implementing the Naive Bayes algorithm to conduct sentiment analysis on existing opinions. This study aims to analyze public opinion on social media towards tourist destinations in Bekasi Regency using the Naive Bayes algorithm. The data used in this study are posts or comments from the public on social media facebook as much as 1000 data. The method of data collection is done manually. The data analysis technique in this study are changing non-standard words, labelling, text preprocessing and naive bayes analysis methods. The results of this study indicate that positive opinion dominates compared to negative and neutral opinions with the results obtained at F1 positive score 83.5%, F1 negative score 68.2% and F1 neutral score 59.5% with positive recall 81%, negative 82% and neutral 55% precision positive 85%, negative 58% and neutral 64% with an accuracy rate of 76%.
本研究的主题是通过使用朴素贝叶斯算法对现有的意见进行情感分析,来讨论与贝卡西地区旅游目的地相关的社交媒体舆论问题。本研究旨在利用朴素贝叶斯算法分析社会媒体上对贝卡西摄政旅游目的地的舆论。本研究使用的数据是公众在社交媒体facebook上的帖子或评论多达1000条数据。数据收集的方法是手工完成的。本研究的数据分析技术包括非标准词、标签、文本预处理和朴素贝叶斯分析方法。本研究结果表明,在F1阳性评分为83.5%、F1阴性评分为68.2%、F1中性评分为59.5%时,正面回忆率为81%、负面回忆率为82%、中性回忆率为55%时,正面回忆率为85%、负面回忆率为58%、中性回忆率为64%,正确率为76%。
{"title":"Sentiment Analysis Destinasi Wisata Berdasarkan Opini Masyarakat Menggunakan Naive Bayes","authors":"Rizki Alamsyah, Tb. Ai Munandar, Fata Nidaul Khasanah, Siti Setiawati","doi":"10.20895/dinda.v2i2.690","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.690","url":null,"abstract":"The topic used in this research is to discuss the problem of public opinion on social media related to tourist destinations in Bekasi Regency by implementing the Naive Bayes algorithm to conduct sentiment analysis on existing opinions. This study aims to analyze public opinion on social media towards tourist destinations in Bekasi Regency using the Naive Bayes algorithm. The data used in this study are posts or comments from the public on social media facebook as much as 1000 data. The method of data collection is done manually. The data analysis technique in this study are changing non-standard words, labelling, text preprocessing and naive bayes analysis methods. The results of this study indicate that positive opinion dominates compared to negative and neutral opinions with the results obtained at F1 positive score 83.5%, F1 negative score 68.2% and F1 neutral score 59.5% with positive recall 81%, negative 82% and neutral 55% precision positive 85%, negative 58% and neutral 64% with an accuracy rate of 76%.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117133871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Perancangan Basis Data Menggunakan Normalisasi Tabel Pada Perusahaan Dagang Barokah Abadi 设计数据库使用永久巴洛克贸易公司的图表正常化
Pub Date : 2022-07-28 DOI: 10.20895/dinda.v2i2.563
Sayyid Yakan Khomsi Pane, Nur Ghaniaviyanto Ramadhan, Faisal Dharma Adhinata
Many human activities are related to information systems. Not only in developed countries, in Indonesia, information systems have been widely applied everywhere, such as in offices, supermarkets, airports, and even at home when users interact with the internet. Increased company operations in business activities can not be separated from information technology. The use of information technology is one of the effective steps in data processing, as well as business transactions using increasingly sophisticated computer equipment. A good database design plays a very important role in the performance and smooth running of an agency. So, in this research, a database design will be carried out with table normalization using MySQL at the Barokah Abadi trading company. This research also designs using entity relationship diagram (ERD).
许多人类活动都与信息系统有关。不仅在发达国家,在印度尼西亚,信息系统已经被广泛应用于任何地方,例如办公室、超市、机场,甚至在用户与互联网交互的家中。企业经营活动的增加离不开信息技术。信息技术的使用是数据处理的有效步骤之一,以及使用日益复杂的计算机设备进行商业交易。一个好的数据库设计对一个机构的性能和平稳运行起着非常重要的作用。因此,在本研究中,将在Barokah Abadi贸易公司使用MySQL进行表规范化的数据库设计。本研究亦采用实体关系图(ERD)进行设计。
{"title":"Perancangan Basis Data Menggunakan Normalisasi Tabel Pada Perusahaan Dagang Barokah Abadi","authors":"Sayyid Yakan Khomsi Pane, Nur Ghaniaviyanto Ramadhan, Faisal Dharma Adhinata","doi":"10.20895/dinda.v2i2.563","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.563","url":null,"abstract":"Many human activities are related to information systems. Not only in developed countries, in Indonesia, information systems have been widely applied everywhere, such as in offices, supermarkets, airports, and even at home when users interact with the internet. Increased company operations in business activities can not be separated from information technology. The use of information technology is one of the effective steps in data processing, as well as business transactions using increasingly sophisticated computer equipment. A good database design plays a very important role in the performance and smooth running of an agency. So, in this research, a database design will be carried out with table normalization using MySQL at the Barokah Abadi trading company. This research also designs using entity relationship diagram (ERD).","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132944401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediksi Gaji Berdasarkan Pengalaman Bekerja Menggunakan Metode Regresi Linear 基于经验的工资预测使用线性回归方法
Pub Date : 2022-07-28 DOI: 10.20895/dinda.v2i2.548
Irsyad Zulfikar, M. A. Saputra, Nike Prasetyo, Teguh Rijanandi, Faisal Dharma Adhinata
Industri tidak bisa dipisahkan dari adanya sumber daya manusia (SDM). Walaupun industri memiliki teknologi yang maju dan juga modern, namun berhasilnya suatu perusahaan tak lepas dari jasa para sumber daya manusia yang unggul. Dengan begitu perlu bagi perusahaan untuk memperhatikan para pekerjanya. Salah satu usaha untuk meningkatkan mutu SDM yaitu dengan pemberian gaji berdasarkan pengalaman kerja. Ketika seseorang yang sudah lama  bekerja di suatu perusahaan maka gajinya akan semakin naik. Penelitian ini ditujukan guna menganalisis prediksi gaji karyawan berdasarkan lama tahun bekerja. Dalam penelitian ini faktor pengujianya menggunakan variable (X) sebagai faktor pemicu terhadap variable (Y) konsekuensi. Metode yang digunakan dalam riset ini yaitu menggunakan metode Regresi linier. Kemudian kami menggunakan survey kuesioner kepada 30 responden sebagai metode pengambilan data.
工业不能与人力资源隔绝。尽管工业拥有先进的技术,也有现代的技术,但它确实在很大程度上依赖于现有的人力资源。这样公司就有必要密切注意工人。提高人力资源质量的一个努力是基于工作经验提供工资。当一个人在一家公司工作很长时间时,他的薪水就会增加。本研究旨在分析员工对工作时间的预测。在本研究中,测试因素将变量作为导致可变结果的诱因。本研究采用的方法是线性回归方法。然后我们将对30名受访者进行问卷调查作为一种数据检索方法。
{"title":"Prediksi Gaji Berdasarkan Pengalaman Bekerja Menggunakan Metode Regresi Linear","authors":"Irsyad Zulfikar, M. A. Saputra, Nike Prasetyo, Teguh Rijanandi, Faisal Dharma Adhinata","doi":"10.20895/dinda.v2i2.548","DOIUrl":"https://doi.org/10.20895/dinda.v2i2.548","url":null,"abstract":"Industri tidak bisa dipisahkan dari adanya sumber daya manusia (SDM). Walaupun industri memiliki teknologi yang maju dan juga modern, namun berhasilnya suatu perusahaan tak lepas dari jasa para sumber daya manusia yang unggul. Dengan begitu perlu bagi perusahaan untuk memperhatikan para pekerjanya. Salah satu usaha untuk meningkatkan mutu SDM yaitu dengan pemberian gaji berdasarkan pengalaman kerja. Ketika seseorang yang sudah lama  bekerja di suatu perusahaan maka gajinya akan semakin naik. Penelitian ini ditujukan guna menganalisis prediksi gaji karyawan berdasarkan lama tahun bekerja. Dalam penelitian ini faktor pengujianya menggunakan variable (X) sebagai faktor pemicu terhadap variable (Y) konsekuensi. Metode yang digunakan dalam riset ini yaitu menggunakan metode Regresi linier. Kemudian kami menggunakan survey kuesioner kepada 30 responden sebagai metode pengambilan data.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130817351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediksi Harga Saham Bank Bri Menggunakan Algoritma Linear Regresion Sebagai Strategi Jual Beli Saham
Pub Date : 2022-02-23 DOI: 10.20895/dinda.v2i1.273
Janur Syah Putra, R. Ramadhani, Auliya Burhanuddin
Shares are securities as proof of ownership of investors in a company. Stocks have a volatile nature, this makes stocks difficult to predict. Stock prediction is an effort to estimate the stock price, especially in the Bank Rakyat Indonesia company that will appear in the future, and to increase investors' profit opportunities in making investment decisions. During the COVID-19 pandemic, Bank BRI's shares experienced significant ups and downs in four months, which illustrates the sensitivity of the stock to an event. Therefore, it is important to predict stock prices to reduce the risk accepted by investors. The prediction itself requires time series data. Time series is data that is collected sequentially from time to time. The method used for time series data is Linear Regression because this method can handle time-series data. Based on these problems, stock prediction research will be conducted at the Bank Rakyat Indonesia company using the Linear Regression method. Bank Rakyat Indonesia share price data were obtained from the investing.com website from the period starting on January 1, 2008, to June 1, 2020. The data is processed starting from preprocessing to determine attributes, remove unnecessary attributes, and change the contents of the data type, then process split data to divide the dataset into training and test data. The attributes used in this study are Date and Price and the distribution of the data used is 60:40, 65:35, 70:30, 75:25, and 80:20. The best ratio is at 80:20 which produces train and test accuracy of 0.89 and 0.91, Then each training data and testing data are entered into the linear regression model for prediction. The error results from the predictions were calculated using MAPE and yielded a percentage of 13.751% for training data, 13.773% for test data, and 13.755% for overall data. The MAPE results indicate that the linear regression method can be used to predict the stock price of BRI Bank.
股票是证明投资者在公司所有权的证券。股票具有波动性,这使得股票难以预测。股票预测是对股票价格,特别是对未来将出现的印尼人民银行公司的股票价格进行估计,以增加投资者在进行投资决策时的获利机会。在2019冠状病毒病大流行期间,“一带一路”银行的股价在四个月内经历了大幅起伏,这说明了该股对事件的敏感性。因此,对股票价格进行预测,降低投资者接受的风险是非常重要的。预测本身需要时间序列数据。时间序列是按时间顺序收集的数据。用于时间序列数据的方法是线性回归,因为这种方法可以处理时间序列数据。基于这些问题,本文将运用线性回归方法对印尼人民银行公司进行股票预测研究。从2008年1月1日至2020年6月1日期间,印尼人民银行的股价数据来自investing.com网站。数据的处理从预处理开始,确定属性,去除不必要的属性,改变数据类型的内容,然后对拆分数据进行处理,将数据集划分为训练数据和测试数据。本研究中使用的属性为Date和Price,使用的数据分布为60:40、65:35、70:30、75:25和80:20。最佳比例为80:20,训练和测试准确率分别为0.89和0.91,然后将每个训练数据和测试数据输入线性回归模型进行预测。使用MAPE计算预测的误差结果,训练数据的误差百分比为13.751%,测试数据的误差百分比为13.773%,整体数据的误差百分比为13.755%。MAPE结果表明,线性回归方法可以用来预测BRI银行的股价。
{"title":"Prediksi Harga Saham Bank Bri Menggunakan Algoritma Linear Regresion Sebagai Strategi Jual Beli Saham","authors":"Janur Syah Putra, R. Ramadhani, Auliya Burhanuddin","doi":"10.20895/dinda.v2i1.273","DOIUrl":"https://doi.org/10.20895/dinda.v2i1.273","url":null,"abstract":"Shares are securities as proof of ownership of investors in a company. Stocks have a volatile nature, this makes stocks difficult to predict. Stock prediction is an effort to estimate the stock price, especially in the Bank Rakyat Indonesia company that will appear in the future, and to increase investors' profit opportunities in making investment decisions. During the COVID-19 pandemic, Bank BRI's shares experienced significant ups and downs in four months, which illustrates the sensitivity of the stock to an event. Therefore, it is important to predict stock prices to reduce the risk accepted by investors. The prediction itself requires time series data. Time series is data that is collected sequentially from time to time. The method used for time series data is Linear Regression because this method can handle time-series data. Based on these problems, stock prediction research will be conducted at the Bank Rakyat Indonesia company using the Linear Regression method. Bank Rakyat Indonesia share price data were obtained from the investing.com website from the period starting on January 1, 2008, to June 1, 2020. The data is processed starting from preprocessing to determine attributes, remove unnecessary attributes, and change the contents of the data type, then process split data to divide the dataset into training and test data. The attributes used in this study are Date and Price and the distribution of the data used is 60:40, 65:35, 70:30, 75:25, and 80:20. The best ratio is at 80:20 which produces train and test accuracy of 0.89 and 0.91, Then each training data and testing data are entered into the linear regression model for prediction. The error results from the predictions were calculated using MAPE and yielded a percentage of 13.751% for training data, 13.773% for test data, and 13.755% for overall data. The MAPE results indicate that the linear regression method can be used to predict the stock price of BRI Bank.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"329 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114376796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Dinda : Data Science, Information Technology, and Data Analytics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1