首页 > 最新文献

2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)最新文献

英文 中文
An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators 使用可重构虚拟通道分配器的片上网络的高效分布式交换机方案
Pub Date : 2015-07-22 DOI: 10.1109/ISLPED.2015.7273522
Mohammad Sadrosadati, Amirhossein Mirhosseini, Homa Aghilinasab, H. Sarbazi-Azad
Network-on-Chip (NoC) is a key element in the total power consumption of a chip multiprocessor. Dynamic Voltage Scaling is a promising method for power saving in NoCs since it contributes to reduction in both static and dynamic power consumptions. In this paper, we propose a novel scheme to reduce on-chip network power consumption when the number of Virtual Channels (VCs) with active allocation requests per cycle is less than the number of total VCs. In our method, we introduce a reconfigurable arbitration logic which can be configured to have multiple latencies and hence, multiple slack times. The increased slack times are then used to reduce the supply voltage of the routers in order to reduce the power consumption. By using this method, we manage to save power by up to 45.7% compared to a baseline architecture without any performance loss.
片上网络(NoC)是芯片多处理器总功耗的一个关键因素。由于动态电压缩放有助于降低静态和动态功耗,因此它是一种很有前途的noc节能方法。在本文中,我们提出了一种新颖的方案,当每个周期具有活动分配请求的虚拟通道(vc)的数量小于总vc的数量时,可以降低片上网络的功耗。在我们的方法中,我们引入了一个可重新配置的仲裁逻辑,该逻辑可以配置为具有多个延迟,因此具有多个空闲时间。增加的空闲时间然后用来降低路由器的供电电压,以减少功耗。通过使用这种方法,与基线架构相比,我们设法节省了高达45.7%的功率,而没有任何性能损失。
{"title":"An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators","authors":"Mohammad Sadrosadati, Amirhossein Mirhosseini, Homa Aghilinasab, H. Sarbazi-Azad","doi":"10.1109/ISLPED.2015.7273522","DOIUrl":"https://doi.org/10.1109/ISLPED.2015.7273522","url":null,"abstract":"Network-on-Chip (NoC) is a key element in the total power consumption of a chip multiprocessor. Dynamic Voltage Scaling is a promising method for power saving in NoCs since it contributes to reduction in both static and dynamic power consumptions. In this paper, we propose a novel scheme to reduce on-chip network power consumption when the number of Virtual Channels (VCs) with active allocation requests per cycle is less than the number of total VCs. In our method, we introduce a reconfigurable arbitration logic which can be configured to have multiple latencies and hence, multiple slack times. The increased slack times are then used to reduce the supply voltage of the routers in order to reduce the power consumption. By using this method, we manage to save power by up to 45.7% compared to a baseline architecture without any performance loss.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114798389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Modeling and characterization of the system-level Power Delivery Network for a dual-core ARM Cortex-A57 cluster in 28nm CMOS 基于28nm CMOS的双核ARM Cortex-A57集群系统级功率传输网络建模与表征
Pub Date : 2015-07-22 DOI: 10.1109/ISLPED.2015.7273505
Shidhartha Das, P. Whatmough, David M. Bull
Power delivery is a well-known challenge for high-end microprocessor systems. Comparatively, mobile computing platforms typically consume order-of-magnitude lower currents, but economic and volume constraints limit the quality of the Power Delivery Network. In addition, the trend towards GHz+ operating frequencies and the ubiquity of low-power techniques such as clock-gating and power-gating, make these systems susceptible to pathological AC transients. Consequently, mobile computing systems are ultimately limited by power-delivery. In this paper, we present the system-level Power Delivery Network (PDN) modeling, analysis and measurement results on a dual-core 64bit ARM Cortex-A57 compute cluster in 28nm CMOS. We present a comprehensive analysis of the PDN by characterizing the individual contribution of each constituent i.e. the PCB, package and the die. We present frequency- and time-domain simulation results and correlate that with measurement (both on-chip and off-chip). Our results demonstrate how complex software and micro-architectural interactions can trigger PDN resonances that ultimately lead to system failure.
功率传输是高端微处理器系统面临的一个众所周知的挑战。相比之下,移动计算平台通常消耗数量级更低的电流,但经济和体积限制限制了电力输送网络的质量。此外,GHz+工作频率的趋势以及时钟门控和功率门控等低功耗技术的普遍存在,使这些系统容易受到病态交流瞬变的影响。因此,移动计算系统最终受到功率传输的限制。在本文中,我们介绍了在28nm CMOS的双核64位ARM Cortex-A57计算集群上的系统级功率传递网络(PDN)建模、分析和测量结果。我们通过描述每个组成部分(即PCB,封装和模具)的单独贡献,对PDN进行了全面分析。我们提出了频率和时域仿真结果,并将其与测量(片上和片外)相关联。我们的研究结果表明,复杂的软件和微架构交互如何触发PDN共振,最终导致系统故障。
{"title":"Modeling and characterization of the system-level Power Delivery Network for a dual-core ARM Cortex-A57 cluster in 28nm CMOS","authors":"Shidhartha Das, P. Whatmough, David M. Bull","doi":"10.1109/ISLPED.2015.7273505","DOIUrl":"https://doi.org/10.1109/ISLPED.2015.7273505","url":null,"abstract":"Power delivery is a well-known challenge for high-end microprocessor systems. Comparatively, mobile computing platforms typically consume order-of-magnitude lower currents, but economic and volume constraints limit the quality of the Power Delivery Network. In addition, the trend towards GHz+ operating frequencies and the ubiquity of low-power techniques such as clock-gating and power-gating, make these systems susceptible to pathological AC transients. Consequently, mobile computing systems are ultimately limited by power-delivery. In this paper, we present the system-level Power Delivery Network (PDN) modeling, analysis and measurement results on a dual-core 64bit ARM Cortex-A57 compute cluster in 28nm CMOS. We present a comprehensive analysis of the PDN by characterizing the individual contribution of each constituent i.e. the PCB, package and the die. We present frequency- and time-domain simulation results and correlate that with measurement (both on-chip and off-chip). Our results demonstrate how complex software and micro-architectural interactions can trigger PDN resonances that ultimately lead to system failure.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132146702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
期刊
2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1