首页 > 最新文献

Int. J. Comput. Intell. Appl.最新文献

英文 中文
Feature Selection in GPCR Classification Using BAT Algorithm 基于BAT算法的GPCR分类特征选择
Pub Date : 2020-05-04 DOI: 10.1142/s1469026820500066
Safia Bekhouche, Y. M. B. Ali
G-Protein-Coupled Receptors (GPCR) are the large family of protein membrane; and until now some of them still remain orphans. Predicting GPCR functions is a challenging task, it depends closely to ...
g蛋白偶联受体(GPCR)是蛋白质膜的大家族;直到现在,他们中的一些人仍然是孤儿。预测GPCR的功能是一项具有挑战性的任务,它与…
{"title":"Feature Selection in GPCR Classification Using BAT Algorithm","authors":"Safia Bekhouche, Y. M. B. Ali","doi":"10.1142/s1469026820500066","DOIUrl":"https://doi.org/10.1142/s1469026820500066","url":null,"abstract":"G-Protein-Coupled Receptors (GPCR) are the large family of protein membrane; and until now some of them still remain orphans. Predicting GPCR functions is a challenging task, it depends closely to ...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116525273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determining Subcategories of Facial Expressions for Improved Performance in Practical Applications 确定面部表情的子类别以提高实际应用中的表现
Pub Date : 2020-04-13 DOI: 10.1142/s1469026820500042
Xuejian Wang, M. Fairhurst, A. Canuto
In the context of facial expression recognition (FER), this paper reviews the fundamental theories of emotions and further explains the key dimensions of a defined emotional space. The main contrib...
在面部表情识别的背景下,本文回顾了情绪的基本理论,并进一步解释了一个定义的情绪空间的关键维度。主要的贡献是……
{"title":"Determining Subcategories of Facial Expressions for Improved Performance in Practical Applications","authors":"Xuejian Wang, M. Fairhurst, A. Canuto","doi":"10.1142/s1469026820500042","DOIUrl":"https://doi.org/10.1142/s1469026820500042","url":null,"abstract":"In the context of facial expression recognition (FER), this paper reviews the fundamental theories of emotions and further explains the key dimensions of a defined emotional space. The main contrib...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132749480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Robust Deep Neural Network Based Breast Cancer Detection and Classification 基于鲁棒深度神经网络的乳腺癌检测与分类
Pub Date : 2020-04-13 DOI: 10.1142/s1469026820500078
R. Mansour
The exponential upward push in breast cancer cases across the globe has alarmed academia-industries to obtain certain more effect and strong Breast cancer laptop Aided prognosis (BC-CAD) device for...
全球范围内乳腺癌病例呈指数级上升,这给学术界和工业界敲响了警钟,要求他们为乳腺癌患者提供更有效、更强大的笔记本电脑辅助预后(BC-CAD)设备。
{"title":"A Robust Deep Neural Network Based Breast Cancer Detection and Classification","authors":"R. Mansour","doi":"10.1142/s1469026820500078","DOIUrl":"https://doi.org/10.1142/s1469026820500078","url":null,"abstract":"The exponential upward push in breast cancer cases across the globe has alarmed academia-industries to obtain certain more effect and strong Breast cancer laptop Aided prognosis (BC-CAD) device for...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"15 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133596045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Predicting Maintenance and Rehabilitation Cost for Buildings Based on Artificial Neural Network and Fuzzy Logic 基于人工神经网络和模糊逻辑的建筑物维修修复成本预测
Pub Date : 2020-04-13 DOI: 10.1142/s1469026820500017
A. Otmani, M. Bouabaz, A. Al-Hajj
In this paper, the study aims to develop a model for predicting and budgeting maintenance and rehabilitation projects costs for residential buildings throughout their life cycle based on artificial...
本文旨在建立一个基于人工成本的住宅建筑全生命周期维修与修复工程成本预测与预算模型。
{"title":"Predicting Maintenance and Rehabilitation Cost for Buildings Based on Artificial Neural Network and Fuzzy Logic","authors":"A. Otmani, M. Bouabaz, A. Al-Hajj","doi":"10.1142/s1469026820500017","DOIUrl":"https://doi.org/10.1142/s1469026820500017","url":null,"abstract":"In this paper, the study aims to develop a model for predicting and budgeting maintenance and rehabilitation projects costs for residential buildings throughout their life cycle based on artificial...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"92 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134324378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification 基于变分自编码器的高维小样本数据分类降维方法
Pub Date : 2020-04-13 DOI: 10.1142/s1469026820500029
M.S. Mahmud, J. Huang, Xianghua Fu
Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains...
特征数(维数)过高高于样本数(观测值)的分类问题是许多领域中必不可少的研究和应用领域。
{"title":"Variational Autoencoder-Based Dimensionality Reduction for High-Dimensional Small-Sample Data Classification","authors":"M.S. Mahmud, J. Huang, Xianghua Fu","doi":"10.1142/s1469026820500029","DOIUrl":"https://doi.org/10.1142/s1469026820500029","url":null,"abstract":"Classification problems in which the number of features (dimensions) is unduly higher than the number of samples (observations) is an essential research and application area in a variety of domains...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131550957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Optimizing Nonlinear Parameters of Sugeno Type Fuzzy Rules using GWO for Data Classification 用GWO算法优化Sugeno型模糊规则的非线性参数
Pub Date : 2020-04-13 DOI: 10.1142/s1469026820500091
M. Abdulgader, D. Kaur
In this paper, a Sugeno type fuzzy system based on the fuzzy clustering has been developed for a variety of datasets. The number of rules for each dataset is based on the optimum number of clusters...
本文针对不同类型的数据集,提出了一种基于模糊聚类的Sugeno型模糊系统。每个数据集的规则数是基于最优簇数…
{"title":"Optimizing Nonlinear Parameters of Sugeno Type Fuzzy Rules using GWO for Data Classification","authors":"M. Abdulgader, D. Kaur","doi":"10.1142/s1469026820500091","DOIUrl":"https://doi.org/10.1142/s1469026820500091","url":null,"abstract":"In this paper, a Sugeno type fuzzy system based on the fuzzy clustering has been developed for a variety of datasets. The number of rules for each dataset is based on the optimum number of clusters...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127258244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Memetic Artificial Bee Colony Algorithm for High Dimensional Problems 求解高维问题的模因人工蜂群算法
Pub Date : 2020-03-01 DOI: 10.1142/s146902682050008x
Dongli Jia, Teng Li, Yufei Zhang, Haijiang Wang
This work proposed a memetic version of Artificial Bee Colony algorithm, or called LSABC, which employed a “shrinking” local search strategy. By gradually shrinking the local search space along with the optimization process, the proposed LSABC algorithm randomly explores a large space in the early run time. This helps to avoid premature convergence. Then in the later evolution process, the LSABC finely exploits a small region around the current best solution to achieve a more accurate output value. The optimization behavior of the LSABC algorithm was studied and analyzed in the work. Compared with the classic ABC and several other state-of-the-art optimization algorithms, the LSABC shows a better performance in terms of convergence rate and quality of results for high-dimensional problems.
这项工作提出了一种模因版本的人工蜂群算法,或称为LSABC,它采用了“缩小”的局部搜索策略。通过在优化过程中逐步缩小局部搜索空间,提出的LSABC算法在运行初期随机探索一个较大的空间。这有助于避免过早收敛。然后在后期的演化过程中,LSABC精细地利用当前最佳解决方案周围的小区域,以获得更精确的输出值。工作中对LSABC算法的优化行为进行了研究和分析。与经典的ABC算法和其他几种最先进的优化算法相比,LSABC算法在高维问题的收敛速度和结果质量方面表现出更好的性能。
{"title":"A Memetic Artificial Bee Colony Algorithm for High Dimensional Problems","authors":"Dongli Jia, Teng Li, Yufei Zhang, Haijiang Wang","doi":"10.1142/s146902682050008x","DOIUrl":"https://doi.org/10.1142/s146902682050008x","url":null,"abstract":"This work proposed a memetic version of Artificial Bee Colony algorithm, or called LSABC, which employed a “shrinking” local search strategy. By gradually shrinking the local search space along with the optimization process, the proposed LSABC algorithm randomly explores a large space in the early run time. This helps to avoid premature convergence. Then in the later evolution process, the LSABC finely exploits a small region around the current best solution to achieve a more accurate output value. The optimization behavior of the LSABC algorithm was studied and analyzed in the work. Compared with the classic ABC and several other state-of-the-art optimization algorithms, the LSABC shows a better performance in terms of convergence rate and quality of results for high-dimensional problems.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129481303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modified Selfish Herd Optimizer for Function Optimization 改进的自私羊群优化器的功能优化
Pub Date : 2020-03-01 DOI: 10.1142/s1469026820500030
Ruxin Zhao, Yongli Wang, Chang Liu, Peng Hu, Yanchao Li, Hao Li, Chi Yuan
Selfish herd optimizer (SHO) is a new optimization algorithm. However, its optimization performance is not satisfactory. The main reason for this phenomenon is the weak global search ability of SHO. In this paper, in order to increase the global search ability of SHO, we add Levy-flight distribution strategy. To verify the performance of the proposed algorithm, we use 10 benchmark functions as test cases. Experiment results show that our algorithm is more competitive.
自私群优化算法(SHO)是一种新的优化算法。然而,其优化性能并不令人满意。造成这种现象的主要原因是SHO的全局搜索能力较弱。在本文中,为了提高SHO的全局搜索能力,我们加入了Levy-flight分配策略。为了验证所提出算法的性能,我们使用了10个基准函数作为测试用例。实验结果表明,该算法具有较强的竞争力。
{"title":"Modified Selfish Herd Optimizer for Function Optimization","authors":"Ruxin Zhao, Yongli Wang, Chang Liu, Peng Hu, Yanchao Li, Hao Li, Chi Yuan","doi":"10.1142/s1469026820500030","DOIUrl":"https://doi.org/10.1142/s1469026820500030","url":null,"abstract":"Selfish herd optimizer (SHO) is a new optimization algorithm. However, its optimization performance is not satisfactory. The main reason for this phenomenon is the weak global search ability of SHO. In this paper, in order to increase the global search ability of SHO, we add Levy-flight distribution strategy. To verify the performance of the proposed algorithm, we use 10 benchmark functions as test cases. Experiment results show that our algorithm is more competitive.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134398840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
WOADF: Whale Optimization Integrated Adaptive Dragonfly Algorithm Enabled with the TDD Properties for Model Transformation WOADF:鲸鱼优化集成自适应蜻蜓算法,支持TDD属性用于模型转换
Pub Date : 2019-12-18 DOI: 10.1142/s1469026819500263
P. Jadhav, S. Joshi
Model Transformation (MT) has led the researchers to concentrate more in the field of software engineering. MT focuses mainly on transforming the input model to the target model to make it easily u...
模型转换(MT)使研究人员越来越关注软件工程领域。机器翻译主要侧重于将输入模型转换为目标模型,使其易于实现。
{"title":"WOADF: Whale Optimization Integrated Adaptive Dragonfly Algorithm Enabled with the TDD Properties for Model Transformation","authors":"P. Jadhav, S. Joshi","doi":"10.1142/s1469026819500263","DOIUrl":"https://doi.org/10.1142/s1469026819500263","url":null,"abstract":"Model Transformation (MT) has led the researchers to concentrate more in the field of software engineering. MT focuses mainly on transforming the input model to the target model to make it easily u...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123616211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Regressive Whale Optimization for Workflow Scheduling in Cloud Computing 云计算中工作流调度的回归鲸鱼优化
Pub Date : 2019-12-03 DOI: 10.1142/s146902681950024x
G. N. Reddy, S. Kumar
Cloud computing is the advancing technology that aims at providing services to the customers with the available resources in the cloud environment. When the multiple users request service from the ...
云计算是一种先进的技术,旨在利用云环境中的可用资源为客户提供服务。当多个用户向…
{"title":"Regressive Whale Optimization for Workflow Scheduling in Cloud Computing","authors":"G. N. Reddy, S. Kumar","doi":"10.1142/s146902681950024x","DOIUrl":"https://doi.org/10.1142/s146902681950024x","url":null,"abstract":"Cloud computing is the advancing technology that aims at providing services to the customers with the available resources in the cloud environment. When the multiple users request service from the ...","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115406803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
Int. J. Comput. Intell. Appl.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1