Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.032
M. Yokoyama, A. Takei, R. Yoshidome, G. Yagawa
{"title":"Coupled simulation of vibration and sound radiation of violin in large space","authors":"M. Yokoyama, A. Takei, R. Yoshidome, G. Yagawa","doi":"10.23967/wccm-apcom.2022.032","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.032","url":null,"abstract":"","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115356416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.085
I. Riku, K. Mimura
. In this study, we at first employ a nonaffine polymer chains network model to account for the irreversible structural change during the deformation of DN gels. And then, a finite element model of the DN gels under simple tension is constructed. On the other hand, neck propagation is one kind of localized instability and there will be a local transfer of strain energy from one part of the model to neighboring parts. To solve such unstable quasi-static problem, an automatic mechanism provided by Abaqus/Standard is employed. The simulation results show that the nonaffine polymer chains network model together with the stablization algorithm for localized transformation of strain energy can be employed to reproduce the phenomenon of neck propagation in DN gels very well.
{"title":"Numerical Simulation of Neck Propagation in Double Network Hydrogel","authors":"I. Riku, K. Mimura","doi":"10.23967/wccm-apcom.2022.085","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.085","url":null,"abstract":". In this study, we at first employ a nonaffine polymer chains network model to account for the irreversible structural change during the deformation of DN gels. And then, a finite element model of the DN gels under simple tension is constructed. On the other hand, neck propagation is one kind of localized instability and there will be a local transfer of strain energy from one part of the model to neighboring parts. To solve such unstable quasi-static problem, an automatic mechanism provided by Abaqus/Standard is employed. The simulation results show that the nonaffine polymer chains network model together with the stablization algorithm for localized transformation of strain energy can be employed to reproduce the phenomenon of neck propagation in DN gels very well.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123392989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.015
T. Kattmann, O. Burghardt, N. Gauger, N. Beishuizen
. This paper showcases the multiphysics discrete adjoint solver of the open Source solver SU2 at the example of a pin-array heat exchanger, simulated via a simplified 2D unit cell to evaluate the pin-shapes performance. The shape derivatives of the utilized conjugate heat transfer case are validated against finite differences and show good agreement. In a constrained shape optimization, the presented workflow proves its robustness over a full optimization. The utilized mesh deformation setup for the investigated downstream periodic and internal flow is presented in detail, as retaining a valid mesh under deformation was found to be challenging.
{"title":"Adjoint-Based Shape Optimization for Industrial Heat Exchangers","authors":"T. Kattmann, O. Burghardt, N. Gauger, N. Beishuizen","doi":"10.23967/wccm-apcom.2022.015","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.015","url":null,"abstract":". This paper showcases the multiphysics discrete adjoint solver of the open Source solver SU2 at the example of a pin-array heat exchanger, simulated via a simplified 2D unit cell to evaluate the pin-shapes performance. The shape derivatives of the utilized conjugate heat transfer case are validated against finite differences and show good agreement. In a constrained shape optimization, the presented workflow proves its robustness over a full optimization. The utilized mesh deformation setup for the investigated downstream periodic and internal flow is presented in detail, as retaining a valid mesh under deformation was found to be challenging.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123598499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.110
F. Cruzeiro, L. Campos
. The accuracy of the numerical solution obtained by the Boundary Element Method (BEM) is directly affected by the type of interpolation function used. Meanwhile, interpolation by radial basis function augmented with polynomials has been shown to be more accurate than Lagrange interpolation for a range of different functions. Therefore, this paper is concerned with the application of such functions as the interpolation functions for all boundary values in the boundary element method for the numerical solution of two-dimensional heat transfer problems. Numerical examples with different geometries and temperature distributions are presented and comparisons with both isogeometric and classical formulation are made to demonstrate the accuracy of the proposed method.
{"title":"Testing the use of radial basis function augmented with polynomials as basis functions in the boundary element method for heat transfer problems","authors":"F. Cruzeiro, L. Campos","doi":"10.23967/wccm-apcom.2022.110","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.110","url":null,"abstract":". The accuracy of the numerical solution obtained by the Boundary Element Method (BEM) is directly affected by the type of interpolation function used. Meanwhile, interpolation by radial basis function augmented with polynomials has been shown to be more accurate than Lagrange interpolation for a range of different functions. Therefore, this paper is concerned with the application of such functions as the interpolation functions for all boundary values in the boundary element method for the numerical solution of two-dimensional heat transfer problems. Numerical examples with different geometries and temperature distributions are presented and comparisons with both isogeometric and classical formulation are made to demonstrate the accuracy of the proposed method.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121754663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.098
Q. Huang, Z. Liu, A. Moni, S. Ravi, F. Tian, J. Young, J. Lai
. The immersed boundary method (IBM) has attracted growing interest in the computational fluid dynamics (CFD) research community due to its simplicity in dealing with moving boundaries in fluid-structure interaction (FSI) systems. We present a study on streamline penetration, velocity error and consequences of a FSI solver based on an iterative feedback IBM. In the FSI, the fluid flows are solved by the lattice Boltzmann method; the solid structure deformation is solved by the finite difference method, and an iterative feedback IBM is used to realize the interaction between fluid and structure. The iteration can improve the no-slip and no-penetration boundary conditions at the fluid-solid interface. Four benchmark cases are simulated to study the reduced velocity error and its consequences: a uniform flow over a flapping foil, flow-induced vibration of a flexible plate attached behind a stationary cylinder in a channel, flow through a two-dimensional asymmetric stenosis and a one-sided collapsible channel. Results show that the iterative IBM can suppress the boundary-slip error and spurious flow penetration on the solid wall. While the iterative IBM does not have significant effect on the force production and structure deformation for external flows, it significantly improves the prediction of the force distribution and structure deformation for internal flows. The increased computational cost incurred by the iteration can be largely reduced by increasing the feedback coefficient. This study will provide a better understanding of the feedback IBM and a better option for the CFD community. channel walls in the velocity contours for 1 iteration, but not for 5 iterations. These observations demonstrate that the iterative IBM can suppress the spurious flow penetration and improve the no-penetration boundary conditions at the walls. The vorticity contours show that there is no vortex shedding downstream of the stenosis. The vortices are stretched further downstream of the stenosis for the five iterations.
{"title":"Reducing velocity error and its consequences by an iterative feedback immersed boundary method","authors":"Q. Huang, Z. Liu, A. Moni, S. Ravi, F. Tian, J. Young, J. Lai","doi":"10.23967/wccm-apcom.2022.098","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.098","url":null,"abstract":". The immersed boundary method (IBM) has attracted growing interest in the computational fluid dynamics (CFD) research community due to its simplicity in dealing with moving boundaries in fluid-structure interaction (FSI) systems. We present a study on streamline penetration, velocity error and consequences of a FSI solver based on an iterative feedback IBM. In the FSI, the fluid flows are solved by the lattice Boltzmann method; the solid structure deformation is solved by the finite difference method, and an iterative feedback IBM is used to realize the interaction between fluid and structure. The iteration can improve the no-slip and no-penetration boundary conditions at the fluid-solid interface. Four benchmark cases are simulated to study the reduced velocity error and its consequences: a uniform flow over a flapping foil, flow-induced vibration of a flexible plate attached behind a stationary cylinder in a channel, flow through a two-dimensional asymmetric stenosis and a one-sided collapsible channel. Results show that the iterative IBM can suppress the boundary-slip error and spurious flow penetration on the solid wall. While the iterative IBM does not have significant effect on the force production and structure deformation for external flows, it significantly improves the prediction of the force distribution and structure deformation for internal flows. The increased computational cost incurred by the iteration can be largely reduced by increasing the feedback coefficient. This study will provide a better understanding of the feedback IBM and a better option for the CFD community. channel walls in the velocity contours for 1 iteration, but not for 5 iterations. These observations demonstrate that the iterative IBM can suppress the spurious flow penetration and improve the no-penetration boundary conditions at the walls. The vorticity contours show that there is no vortex shedding downstream of the stenosis. The vortices are stretched further downstream of the stenosis for the five iterations.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126415862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.044
N. Yamagata, M. Ichimiya
. Die-casting is a casting method suitable for mass production because it can accurately form complicated shapes. However, when the mold is filled with the molten metal, casting cavities (gas porosity) are generated due to air entrainment, and the strength of the product varies. In this study, the mold filling process considering air entrainment in the die cast are simulated using the two-phase flow SPH method. And then, the behavior of air entrainment due to the filling of molten metal (Aluminum alloy), especially the efect of injection speeds are investigated. In concluson, it is possible to investigate the air entrainment behavior at the time of filling the molten metal and the flow behavior due to different filling speeds. In addition, to speed up the two-phase flow program by SPH method, a parallel algorithm using OpenMP is implemented.
{"title":"Development of Mold Filling Process Simulation considering Air Entrainment using SPH Method","authors":"N. Yamagata, M. Ichimiya","doi":"10.23967/wccm-apcom.2022.044","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.044","url":null,"abstract":". Die-casting is a casting method suitable for mass production because it can accurately form complicated shapes. However, when the mold is filled with the molten metal, casting cavities (gas porosity) are generated due to air entrainment, and the strength of the product varies. In this study, the mold filling process considering air entrainment in the die cast are simulated using the two-phase flow SPH method. And then, the behavior of air entrainment due to the filling of molten metal (Aluminum alloy), especially the efect of injection speeds are investigated. In concluson, it is possible to investigate the air entrainment behavior at the time of filling the molten metal and the flow behavior due to different filling speeds. In addition, to speed up the two-phase flow program by SPH method, a parallel algorithm using OpenMP is implemented.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129803070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.127
U. Ali, M. Kikumoto, M. Ciantia, Y. Cui
. Validation and/or calibration of distinct element method (DEM) models is usually performed by comparing element test simulation results with the corresponding stress-strain relationships observed in the laboratory [1] . However, such a validation procedure performed at the macroscopic level does not ensure capturing the microscopic particle-level motion [2] . Thus, the reliability of the DEM model may be limited to some stress paths and may not hold when the material response becomes non-uniform for example when shear bands develop. In this study, the validity of the DEM is assessed by comparing the numerical result with experimental data considering both particle-scale behavior (including particle rotations) and macroscopic stress-strain characteristics observed in shearing tests on granular media. Biaxial shearing tests were conducted on bi-disperse granular assemblies composed of around 2700 circular particles under different confining pressures. Particle-level motions were detected by a novel image analysis technique. Particle rotations are observed to be a key mechanism for the deformation of granular materials. The results from this study suggest that to properly calibrate DEM models able to capture the mechanical behavior in a more realistic way particle scale motions observed in laboratory experiments along with macroscopic response are necessary.
{"title":"Validation of DEM using macroscopic stress-strain behavior and microscopic particle motion in sheared granular assemblies","authors":"U. Ali, M. Kikumoto, M. Ciantia, Y. Cui","doi":"10.23967/wccm-apcom.2022.127","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.127","url":null,"abstract":". Validation and/or calibration of distinct element method (DEM) models is usually performed by comparing element test simulation results with the corresponding stress-strain relationships observed in the laboratory [1] . However, such a validation procedure performed at the macroscopic level does not ensure capturing the microscopic particle-level motion [2] . Thus, the reliability of the DEM model may be limited to some stress paths and may not hold when the material response becomes non-uniform for example when shear bands develop. In this study, the validity of the DEM is assessed by comparing the numerical result with experimental data considering both particle-scale behavior (including particle rotations) and macroscopic stress-strain characteristics observed in shearing tests on granular media. Biaxial shearing tests were conducted on bi-disperse granular assemblies composed of around 2700 circular particles under different confining pressures. Particle-level motions were detected by a novel image analysis technique. Particle rotations are observed to be a key mechanism for the deformation of granular materials. The results from this study suggest that to properly calibrate DEM models able to capture the mechanical behavior in a more realistic way particle scale motions observed in laboratory experiments along with macroscopic response are necessary.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129873401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.003
B. Schaufelberger, A. Altes, A. Trondl, T. Kisters, C. Fehrenbach, P. Matura, M. May
. In crash situations with an electric vehicle, the integrity of the battery cells is critical for the consequences of the crash. A short circuit triggered by deformation and damage of the internal cell structure can cause overheating of the battery (thermal runaway) and may result in a vehicle fire or even an explosion. Thus, for assessing the crashworthiness of electric vehicles, evaluating the deformation states of potential crash situations with respect to the occurrence of a short circuit is crucial. A particular challenge for building a cell model with acceptable computational time lies in the very different spatial scales regarding the overall cell size and the thickness of individual layers. Cells installed in vehicles have dimensions of several centimeters, whereas the thickness of the individual layers is in the micrometer range. Much research has already been conducted based on homogenized cell models that do not explicitly account for the internal layer structure, and existing material models calibrated to experimental data (e.g. [1]-[3]), while explicitly considering the layered structure is just pursued more recently (e.g. [4]-[7]). determined by in-house experiments on the respective materials. For validation, bending tests and indentation tests with different punch geometries along with CT-scans at selected indentation depths are available. Comparing the simulation results with the failure sequence and the force-displacement curve from the experiment, a closer view on critical deformations and on their respective stress states is obtained. The results indicate that in-depth understanding and modelling of the failure behavior is crucial for correctly modeling battery cells under crash loading scenarios.
{"title":"A Detailed Simulation Model to Evaluate the Crash Safety of a Li-Ion Pouch Battery Cell","authors":"B. Schaufelberger, A. Altes, A. Trondl, T. Kisters, C. Fehrenbach, P. Matura, M. May","doi":"10.23967/wccm-apcom.2022.003","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.003","url":null,"abstract":". In crash situations with an electric vehicle, the integrity of the battery cells is critical for the consequences of the crash. A short circuit triggered by deformation and damage of the internal cell structure can cause overheating of the battery (thermal runaway) and may result in a vehicle fire or even an explosion. Thus, for assessing the crashworthiness of electric vehicles, evaluating the deformation states of potential crash situations with respect to the occurrence of a short circuit is crucial. A particular challenge for building a cell model with acceptable computational time lies in the very different spatial scales regarding the overall cell size and the thickness of individual layers. Cells installed in vehicles have dimensions of several centimeters, whereas the thickness of the individual layers is in the micrometer range. Much research has already been conducted based on homogenized cell models that do not explicitly account for the internal layer structure, and existing material models calibrated to experimental data (e.g. [1]-[3]), while explicitly considering the layered structure is just pursued more recently (e.g. [4]-[7]). determined by in-house experiments on the respective materials. For validation, bending tests and indentation tests with different punch geometries along with CT-scans at selected indentation depths are available. Comparing the simulation results with the failure sequence and the force-displacement curve from the experiment, a closer view on critical deformations and on their respective stress states is obtained. The results indicate that in-depth understanding and modelling of the failure behavior is crucial for correctly modeling battery cells under crash loading scenarios.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"350 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125630319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.126
D. Magisano, L. Leonetti, G. Garcea
. This work presents a numerical framework for long dynamic simulations of structures made of multiple thin shells undergoing large deformations. The C1-continuity requirement of the Kirchhoff-Love theory is met in the interior of patches by cubic NURBS approximation functions with membrane locking avoided by patch-wise reduced integration. A simple penalty approach for coupling adjacent patches, applicable also to non-smooth interfaces and non-matching discretization is adopted to impose translational and rotational continuity. A time-stepping scheme is proposed to achieve energy conservation and unconditional stability for general nonlinear strain measures and penalty coupling terms, like the nonlinear rotational one for thin shells. The method is a modified mid-point rule with the internal forces evaluated using the average value of the stress at the step end-points and an integral mean of the strain-displacement tangent operator over the step computed by time integration points.
{"title":"Unconditionally stable dynamic analysis of multi-patch Kirchhoff-Love shells in large deformations","authors":"D. Magisano, L. Leonetti, G. Garcea","doi":"10.23967/wccm-apcom.2022.126","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.126","url":null,"abstract":". This work presents a numerical framework for long dynamic simulations of structures made of multiple thin shells undergoing large deformations. The C1-continuity requirement of the Kirchhoff-Love theory is met in the interior of patches by cubic NURBS approximation functions with membrane locking avoided by patch-wise reduced integration. A simple penalty approach for coupling adjacent patches, applicable also to non-smooth interfaces and non-matching discretization is adopted to impose translational and rotational continuity. A time-stepping scheme is proposed to achieve energy conservation and unconditional stability for general nonlinear strain measures and penalty coupling terms, like the nonlinear rotational one for thin shells. The method is a modified mid-point rule with the internal forces evaluated using the average value of the stress at the step end-points and an integral mean of the strain-displacement tangent operator over the step computed by time integration points.","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123779504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1900-01-01DOI: 10.23967/wccm-apcom.2022.038
B. Rodenberg
{"title":"Design and evaluation of a waveform iteration–based approach for coupling heterogeneous time stepping methods via preCICE","authors":"B. Rodenberg","doi":"10.23967/wccm-apcom.2022.038","DOIUrl":"https://doi.org/10.23967/wccm-apcom.2022.038","url":null,"abstract":"","PeriodicalId":429847,"journal":{"name":"15th World Congress on Computational Mechanics (WCCM-XV) and 8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124073506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}