首页 > 最新文献

Solid State Communications最新文献

英文 中文
Theoretical screening of VS2 monolayer as a promising anode material for metal-ion batteries VS2单层金属离子电池负极材料的理论筛选
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-09 DOI: 10.1016/j.ssc.2026.116322
Zhifeng Xin , Tao Wang , Jianyun Lan
The energy density and rate capabilities of metal-ion batteries are fundamentally influenced by the properties of their electrode materials. Consequently, the development of innovative electrode materials is essential for enhancing the overall performance of these batteries. In the present study, first-principles calculations were utilized to conduct a comprehensive investigation into the electrochemical characteristics of monolayer metal VS2 as a prospective anode material for metal-ion batteries. The findings demonstrate that the VS2 monolayer possesses energetic stability. Furthermore, the VS2 monolayer retains its metallic properties both before and after the adsorption of metal ions. The calculated diffusion energy barriers for Mg, Ca, and Zn ions are 0.061 eV, 0.055 eV, and 0.057 eV, respectively. Importantly, the VS2 monolayer exhibits a high theoretical storage capacity of 2769.18 mAh/g alongside a moderate operating voltage, underscoring its suitability for application in metal-ion batteries.
金属离子电池的能量密度和倍率性能从根本上受其电极材料性能的影响。因此,创新电极材料的开发对于提高这些电池的整体性能至关重要。本研究利用第一性原理计算方法,对单层金属VS2作为金属离子电池负极材料的电化学特性进行了全面研究。研究结果表明,VS2单层具有能量稳定性。此外,VS2单层在吸附金属离子前后都保持了其金属性质。计算得到Mg、Ca和Zn离子的扩散能垒分别为0.061 eV、0.055 eV和0.057 eV。重要的是,VS2单层具有2769.18 mAh/g的理论存储容量和适中的工作电压,强调了其在金属离子电池中的适用性。
{"title":"Theoretical screening of VS2 monolayer as a promising anode material for metal-ion batteries","authors":"Zhifeng Xin ,&nbsp;Tao Wang ,&nbsp;Jianyun Lan","doi":"10.1016/j.ssc.2026.116322","DOIUrl":"10.1016/j.ssc.2026.116322","url":null,"abstract":"<div><div>The energy density and rate capabilities of metal-ion batteries are fundamentally influenced by the properties of their electrode materials. Consequently, the development of innovative electrode materials is essential for enhancing the overall performance of these batteries. In the present study, first-principles calculations were utilized to conduct a comprehensive investigation into the electrochemical characteristics of monolayer metal VS<sub>2</sub> as a prospective anode material for metal-ion batteries. The findings demonstrate that the VS<sub>2</sub> monolayer possesses energetic stability. Furthermore, the VS<sub>2</sub> monolayer retains its metallic properties both before and after the adsorption of metal ions. The calculated diffusion energy barriers for Mg, Ca, and Zn ions are 0.061 eV, 0.055 eV, and 0.057 eV, respectively. Importantly, the VS<sub>2</sub> monolayer exhibits a high theoretical storage capacity of 2769.18 mAh/g alongside a moderate operating voltage, underscoring its suitability for application in metal-ion batteries.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116322"},"PeriodicalIF":2.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glassy formation ability, magnetic transition and low-temperature magnetocaloric performances of amorphous Ho30Gd30Ni20Cu20 ribbon 非晶Ho30Gd30Ni20Cu20带的玻璃化形成能力、磁转变和低温磁热性能
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-09 DOI: 10.1016/j.ssc.2026.116323
Yangzhou Du, Xinpeng Na, Xin Wang, Yong Li, Lingwei Li
We herein experimentally investigated the glassy formation ability (GFA), magnetic transition, and low-temperature magnetocaloric (MC) performances of the melt-spun amorphous Ho30Gd30Ni20Cu20 ribbon. We found that the Ho30Gd30Ni20Cu20 ribbon exhibits excellent GFA and undergoes a typical second-order magnetic transition around 67 K from paramagnetic to ferromagnetic state. Additionally, considerable reversible MC effect in amorphous Ho30Gd30Ni20Cu20 ribbon over a wide temperature range have been realized. The MC parameters of maximum magnetic entropy changes, refrigerant capacity, and temperature-averaged entropy changes (20 K-lift) under magnetic field variations of 0–3/0–7 T are identified as 5.14/10.35 J/kgK, 310.46/736.95 J/kgK, and 5.00/10.10 J/kg, respectively. These values are comparable to those of recently acquired amorphous RE-incorporated MC materials with notable low-temperature performances, making the amorphous Ho30Gd30Ni20Cu20 ribbon of interest for cooling applications.
实验研究了熔融纺丝Ho30Gd30Ni20Cu20非晶带的玻璃化形成能力(GFA)、磁跃迁和低温磁热(MC)性能。我们发现Ho30Gd30Ni20Cu20带状具有优异的GFA,并在67 K左右经历了典型的从顺磁性到铁磁性的二阶磁跃迁。此外,在非晶Ho30Gd30Ni20Cu20带中,在较宽的温度范围内实现了相当大的可逆MC效应。在0-3/0-7 T磁场变化条件下,最大磁熵变化、制冷剂容量和温度平均熵变化(20 k升程)的MC参数分别为5.14/10.35 J/kgK、310.46/736.95 J/kgK和5.00/10.10 J/kg。这些值与最近获得的具有显着低温性能的非晶re - MC材料相当,使非晶Ho30Gd30Ni20Cu20带具有冷却应用的兴趣。
{"title":"Glassy formation ability, magnetic transition and low-temperature magnetocaloric performances of amorphous Ho30Gd30Ni20Cu20 ribbon","authors":"Yangzhou Du,&nbsp;Xinpeng Na,&nbsp;Xin Wang,&nbsp;Yong Li,&nbsp;Lingwei Li","doi":"10.1016/j.ssc.2026.116323","DOIUrl":"10.1016/j.ssc.2026.116323","url":null,"abstract":"<div><div>We herein experimentally investigated the glassy formation ability (GFA), magnetic transition, and low-temperature magnetocaloric (MC) performances of the melt-spun amorphous Ho<sub>30</sub>Gd<sub>30</sub>Ni<sub>20</sub>Cu<sub>20</sub> ribbon. We found that the Ho<sub>30</sub>Gd<sub>30</sub>Ni<sub>20</sub>Cu<sub>20</sub> ribbon exhibits excellent GFA and undergoes a typical second-order magnetic transition around 67 K from paramagnetic to ferromagnetic state. Additionally, considerable reversible MC effect in amorphous Ho<sub>30</sub>Gd<sub>30</sub>Ni<sub>20</sub>Cu<sub>20</sub> ribbon over a wide temperature range have been realized. The MC parameters of maximum magnetic entropy changes, refrigerant capacity, and temperature-averaged entropy changes (20 K-lift) under magnetic field variations of 0–3/0–7 T are identified as 5.14/10.35 J/kgK, 310.46/736.95 J/kgK, and 5.00/10.10 J/kg, respectively. These values are comparable to those of recently acquired amorphous <em>RE</em>-incorporated MC materials with notable low-temperature performances, making the amorphous Ho<sub>30</sub>Gd<sub>30</sub>Ni<sub>20</sub>Cu<sub>20</sub> ribbon of interest for cooling applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116323"},"PeriodicalIF":2.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random forest algorithm assisted ML modelling of perovskite solar cell: Optimization of HTL and absorber layer with efficiency more than 26 % 随机森林算法辅助钙钛矿太阳能电池的ML建模:效率大于26%的HTL和吸收层优化
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-09 DOI: 10.1016/j.ssc.2026.116320
Deepak Kumar Singh , Alok Kumar Patel , Vaibhava Srivastava , Saurabh Gupta , Prem Chand Yadava
<div><div>The potential advancements of machine learning (ML) along with SCAPS-1D tool has offered a framework to predict and identify the stable perovskite based solar cell structures with optimized performances. In this study, investigates the effect of hole transport layer (HTL) (<span><math><mrow><mtext>CsSn</mtext><msub><mi>I</mi><mn>3</mn></msub></mrow></math></span>, Spiro-OMeTAD and <span><math><mrow><mtext>CIS</mtext></mrow></math></span>) on the performance of <span><math><mrow><mtext>FTO</mtext><mo>/</mo><mtext>Sn</mtext><msub><mi>O</mi><mn>2</mn></msub><mo>/</mo><mtext>Absorber</mtext><mspace></mspace><mtext>layer</mtext><mrow><mo>(</mo><mtext>AL</mtext><mo>)</mo></mrow><mo>/</mo><mtext>HTL</mtext><mo>/</mo><mtext>Au</mtext></mrow></math></span> perovskite solar cell (PSC). In the structure, the absorber layers (MASnI<sub>3</sub>, CsPbI<sub>3</sub>, FAPbI<sub>3</sub> and MAPbI<sub>3</sub>) act as insulating layer while <span><math><mrow><mtext>Sn</mtext><msub><mi>O</mi><mn>2</mn></msub></mrow></math></span> employed as electron transport layer. The study focused to optimize the suitable hole transport layer and absorption layer among others on the basis of performance matrices includes layer thickness, bulk defect and doping density. The optimal power conversion efficiency (PCE) of 24.01 % has achieved for the solar cell structure <span><math><mrow><mtext>FTO</mtext><mo>/</mo><mtext>Sn</mtext><msub><mi>O</mi><mn>2</mn></msub><mrow><mrow><mo>(</mo><mrow><mn>90</mn><mspace></mspace><mtext>nm</mtext></mrow><mo>)</mo></mrow><mo>/</mo><mtext>FAPb</mtext></mrow><msub><mi>I</mi><mn>3</mn></msub><mrow><mrow><mo>(</mo><mrow><mn>530</mn><mspace></mspace><mtext>nm</mtext></mrow><mo>)</mo></mrow><mo>/</mo><mtext>CsSn</mtext></mrow><msub><mi>I</mi><mn>3</mn></msub><mrow><mrow><mo>(</mo><mrow><mn>220</mn><mspace></mspace><mtext>nm</mtext></mrow><mo>)</mo></mrow><mo>/</mo><mtext>Au</mtext></mrow></mrow></math></span> with HTL thickness of 220 nm, bulk defect density of 10<sup>17</sup> as well as doping concentration of 10<sup>19</sup>. In addition, the toxic absorption layer of <span><math><mrow><mtext>FAPb</mtext><msub><mi>I</mi><mn>3</mn></msub><mrow><mo>(</mo><mrow><mn>530</mn><mspace></mspace><mtext>nm</mtext></mrow><mo>)</mo></mrow></mrow></math></span> has replaced by non-toxic, eco-friendly <span><math><mrow><mtext>MASn</mtext><msub><mi>I</mi><mn>3</mn></msub><mrow><mo>(</mo><mrow><mn>530</mn><mspace></mspace><mtext>nm</mtext></mrow><mo>)</mo></mrow></mrow></math></span> with same doping concentration as well as defect density and obtained a power conversion efficiency (PCE) = 26.70 %, short circuit current density (<span><math><mrow><msub><mi>J</mi><mtext>SC</mtext></msub></mrow></math></span>) = 33.41 mA/cm<sup>2</sup>, open circuit voltage (<span><math><mrow><msub><mi>V</mi><mtext>OC</mtext></msub></mrow></math></span>) = 0.9825 V and fill factor (FF) = 80.20 %. A machine learning (ML) approach (Random Forest Regression) has utilized to ob
机器学习(ML)和SCAPS-1D工具的潜在进步为预测和识别具有优化性能的稳定钙钛矿基太阳能电池结构提供了一个框架。在本研究中,研究了空穴传输层(HTL) (CsSnI3, Spiro-OMeTAD和CIS)对FTO/SnO2/Absorberlayer(AL)/HTL/Au钙钛矿太阳能电池(PSC)性能的影响。在结构中,吸收层(MASnI3、CsPbI3、FAPbI3和MAPbI3)作为绝缘层,SnO2作为电子输运层。研究的重点是基于层厚、体缺陷和掺杂密度等性能指标,优化合适的空穴传输层和吸收层。当HTL厚度为220nm,体积缺陷密度为1017,掺杂浓度为1019时,FTO/SnO2(90nm)/FAPbI3(530nm)/CsSnI3(220nm)/Au结构的最佳功率转换效率(PCE)为24.01%。此外,将FAPbI3(530nm)的有毒吸收层替换为具有相同掺杂浓度和缺陷密度的无毒环保MASnI3(530nm),得到功率转换效率(PCE) = 26.70%,短路电流密度(JSC) = 33.41 mA/cm2,开路电压(VOC) = 0.9825 V,填充因子(FF) = 80.20%。利用机器学习(ML)方法(随机森林回归)获得太阳能电池的预测性能PCE, VOC, JSC和FF,精度约为。75%。因此,FTO/SnO2/MASnI3/CsSnI3/Au设计将更有利于实验设置,以制造具有增强PCE的钙钛矿太阳能电池。使用ML方法与SCAPS-1D正在深入了解关键性能参数对工艺和性能优化的影响。
{"title":"Random forest algorithm assisted ML modelling of perovskite solar cell: Optimization of HTL and absorber layer with efficiency more than 26 %","authors":"Deepak Kumar Singh ,&nbsp;Alok Kumar Patel ,&nbsp;Vaibhava Srivastava ,&nbsp;Saurabh Gupta ,&nbsp;Prem Chand Yadava","doi":"10.1016/j.ssc.2026.116320","DOIUrl":"10.1016/j.ssc.2026.116320","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The potential advancements of machine learning (ML) along with SCAPS-1D tool has offered a framework to predict and identify the stable perovskite based solar cell structures with optimized performances. In this study, investigates the effect of hole transport layer (HTL) (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;CsSn&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, Spiro-OMeTAD and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;CIS&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) on the performance of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;FTO&lt;/mtext&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;Sn&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;Absorber&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;layer&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mtext&gt;AL&lt;/mtext&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;HTL&lt;/mtext&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;Au&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; perovskite solar cell (PSC). In the structure, the absorber layers (MASnI&lt;sub&gt;3&lt;/sub&gt;, CsPbI&lt;sub&gt;3&lt;/sub&gt;, FAPbI&lt;sub&gt;3&lt;/sub&gt; and MAPbI&lt;sub&gt;3&lt;/sub&gt;) act as insulating layer while &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;Sn&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; employed as electron transport layer. The study focused to optimize the suitable hole transport layer and absorption layer among others on the basis of performance matrices includes layer thickness, bulk defect and doping density. The optimal power conversion efficiency (PCE) of 24.01 % has achieved for the solar cell structure &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;FTO&lt;/mtext&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;Sn&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;90&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;nm&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;FAPb&lt;/mtext&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;530&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;nm&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;CsSn&lt;/mtext&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;220&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;nm&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mtext&gt;Au&lt;/mtext&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with HTL thickness of 220 nm, bulk defect density of 10&lt;sup&gt;17&lt;/sup&gt; as well as doping concentration of 10&lt;sup&gt;19&lt;/sup&gt;. In addition, the toxic absorption layer of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;FAPb&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;530&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;nm&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has replaced by non-toxic, eco-friendly &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mtext&gt;MASn&lt;/mtext&gt;&lt;msub&gt;&lt;mi&gt;I&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mn&gt;530&lt;/mn&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;nm&lt;/mtext&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with same doping concentration as well as defect density and obtained a power conversion efficiency (PCE) = 26.70 %, short circuit current density (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mtext&gt;SC&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) = 33.41 mA/cm&lt;sup&gt;2&lt;/sup&gt;, open circuit voltage (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mtext&gt;OC&lt;/mtext&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) = 0.9825 V and fill factor (FF) = 80.20 %. A machine learning (ML) approach (Random Forest Regression) has utilized to ob","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116320"},"PeriodicalIF":2.4,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptional pyroelectric performances in infrared detectors employing NKBT-KNb lead-free ceramics 采用NKBT-KNb无铅陶瓷的红外探测器具有优异的热释电性能
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-08 DOI: 10.1016/j.ssc.2025.116304
S. Gouthamsri , M. Dhamodhara Naidu , Madala Suguna , R. Santhosh Kumar , P.V. Prasanna Kumar , M. Gnana Kiran , A.V. Padmavathi , Simhadri Raju Juvvala , Kollapudi Sreenivasulu
Infrared imaging, detection, alarm systems, and advancements in smart home technologies are among the lesser-known applications of infrared detectors made from lead-free ceramics. However, a key challenge in improving the performance of ceramics based on sodium bismuth titanate (NBT) is the trade-off between their relatively high depolarization temperature (Td) (ferroelectric to antiferroelectric) and large room-temperature pyroelectric coefficient (p). To address this issue, potassium niobate (KNb) has been incorporated into sodium potassium bismuth titanate (NKBT) ceramics, where it forms a solid solution. This modification breaks the spatial inversion symmetry of the NKBT ceramics and enhances the hybridization between Bi-O, ultimately inducing ferroelectric distortion and leading to increased polarization. Additionally, the incorporation of KNb improves the overall stability of the (1x)Na0.25K0.25Bi0.5TiO3xKNbO3:(x=0.15&x=0.20) ceramics and contributes to the close packing of the structure, thereby maintaining the high depolarization temperature. For the (1x)NKBTxKNb ceramics, the room-temperature pyroelectric coefficient increases significantly with KNb content, rising from 3.42 × 10−4 C m−2 K−1 for x = 0.15 to 16.28 × 10−4 C m−2 K−1 for x = 0.20, while maintaining a high depolarization temperature of 219 °C. The ceramic with (x=0.20) also demonstrates exceptional figures of merit (FOMs) for pyroelectric performance, including Fi = 15.54 × 10−10 mV−1, Fv = 11.53 × 10−2 m2 C−1, and Fd = 39.83 μPa−1/2. These excellent pyroelectric properties and FOM values suggest that these lead free systems are promising candidates for the development of high-performance, lead-free pyroelectric infrared detectors.
红外成像、探测、报警系统和智能家居技术的进步是由无铅陶瓷制成的红外探测器的鲜为人知的应用。然而,改善基于钛酸铋钠(NBT)陶瓷性能的关键挑战是其相对较高的去极化温度(Td)(铁电到反铁电)和较大的室温热释电系数(p)之间的权衡。为了解决这个问题,铌酸钾(KNb)已被纳入钛酸铋钾钠(NKBT)陶瓷中,在那里它形成固溶体。这种修饰破坏了NKBT陶瓷的空间反演对称性,增强了Bi-O之间的杂化,最终导致铁电畸变,导致极化增加。此外,KNb的加入提高了(1−x)Na0.25K0.25Bi0.5TiO3−xKNbO3:(x=0.15&x=0.20)陶瓷的整体稳定性,并有助于结构的紧密填充,从而保持较高的退极化温度。对于(1−x)NKBT - xKNb陶瓷,室温热释电系数随着KNb含量的增加而显著增加,从x = 0.15时的3.42 × 10−4 C m−2 K−1增加到x = 0.20时的16.28 × 10−4 C m−2 K−1,同时保持219℃的高退极化温度。(x=0.20)的陶瓷也表现出优异的热释电性能(FOMs),包括Fi = 15.54 × 10−10 mV−1,Fv = 11.53 × 10−2 m2 C−1,Fd = 39.83 μPa−1/2。这些优异的热释电性能和FOM值表明,这些无铅系统是开发高性能、无铅热释电红外探测器的有希望的候选者。
{"title":"Exceptional pyroelectric performances in infrared detectors employing NKBT-KNb lead-free ceramics","authors":"S. Gouthamsri ,&nbsp;M. Dhamodhara Naidu ,&nbsp;Madala Suguna ,&nbsp;R. Santhosh Kumar ,&nbsp;P.V. Prasanna Kumar ,&nbsp;M. Gnana Kiran ,&nbsp;A.V. Padmavathi ,&nbsp;Simhadri Raju Juvvala ,&nbsp;Kollapudi Sreenivasulu","doi":"10.1016/j.ssc.2025.116304","DOIUrl":"10.1016/j.ssc.2025.116304","url":null,"abstract":"<div><div>Infrared imaging, detection, alarm systems, and advancements in smart home technologies are among the lesser-known applications of infrared detectors made from lead-free ceramics. However, a key challenge in improving the performance of ceramics based on sodium bismuth titanate (NBT) is the trade-off between their relatively high depolarization temperature (T<sub>d</sub>) (<em>ferroelectric to antiferroelectric</em>) and large room-temperature pyroelectric coefficient (<em>p</em>). To address this issue, potassium niobate (KNb) has been incorporated into sodium potassium bismuth titanate (NKBT) ceramics, where it forms a solid solution. This modification breaks the spatial inversion symmetry of the NKBT ceramics and enhances the hybridization between Bi-O, ultimately inducing ferroelectric distortion and leading to increased polarization. Additionally, the incorporation of KNb improves the overall stability of the <span><math><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow><mo>)</mo></mrow><msub><mrow><mi>N</mi><mi>a</mi></mrow><mn>0.25</mn></msub><msub><mi>K</mi><mn>0.25</mn></msub><msub><mrow><mi>B</mi><mi>i</mi></mrow><mn>0.5</mn></msub><mi>T</mi><mi>i</mi><mspace></mspace><msub><mi>O</mi><mn>3</mn></msub><mo>−</mo><mi>x</mi><mi>K</mi><mi>N</mi><mi>b</mi><msub><mi>O</mi><mn>3</mn></msub><mo>:</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>=</mo><mn>0.15</mn><mspace></mspace><mo>&amp;</mo><mspace></mspace><mi>x</mi><mo>=</mo><mn>0.20</mn></mrow><mo>)</mo></mrow></mrow></math></span> ceramics and contributes to the close packing of the structure, thereby maintaining the high depolarization temperature. For the <span><math><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow><mo>)</mo></mrow><mi>N</mi><mi>K</mi><mi>B</mi><mi>T</mi><mo>−</mo><mi>x</mi><mi>K</mi><mi>N</mi><mi>b</mi></mrow></math></span> ceramics, the room-temperature pyroelectric coefficient increases significantly with KNb content, rising from 3.42 × 10<sup>−4</sup> C m<sup>−2</sup> K<sup>−1</sup> for <em>x</em> = 0.15 to 16.28 × 10<sup>−4</sup> C m<sup>−2</sup> K<sup>−1</sup> for <em>x</em> = 0.20, while maintaining a high depolarization temperature of 219 °C. The ceramic with <span><math><mrow><mo>(</mo><mrow><mspace></mspace><mi>x</mi><mo>=</mo><mn>0.20</mn></mrow><mo>)</mo></mrow></math></span> also demonstrates exceptional figures of merit (FOMs) for pyroelectric performance, including F<sub><em>i</em></sub> = 15.54 × 10<sup>−10</sup> mV<sup>−1</sup>, F<em>v</em> = 11.53 × 10<sup>−2</sup> m<sup>2</sup> C<sup>−1</sup>, and F<sub><em>d</em></sub> = 39.83 μPa<sup>−1/2</sup>. These excellent pyroelectric properties and FOM values suggest that these lead free systems are promising candidates for the development of high-performance, lead-free pyroelectric infrared detectors.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116304"},"PeriodicalIF":2.4,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An in-depth study of the impact of diverse vacuum channel geometries on enhancing photoelectron emission performance in photocathodes 深入研究了不同真空通道几何形状对提高光电阴极光电子发射性能的影响
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-08 DOI: 10.1016/j.ssc.2026.116313
Weiwei Sha , Junju Zhang , Li Li , Yi Cai , Guanghui Hao
Vacuum channel GaAs photocathode assemblies, mainly known for their high emission current and enhanced structural stability, are capable of meeting the emission current requirements for specific terahertz vacuum devices. They commonly serve as a valuable reference for designing electron sources in both terahertz vacuum applications and large-scale scientific instruments. The geometries of the channels vary significantly, and to explore the impact of various channel designs on electron emission performance, this investigation employs CST simulation software to model and analyze the electron emission characteristics of five distinct channel geometries: rectangular, inverted trapezoidal, inverted triangular, trapezoidal, and arc-shaped channel structures. The simulation results indicate that the configuration of vacuum channel structures markedly influences collection efficiency. The arc-shaped channel structure exhibits the highest collection efficiency of 98.34 %, demonstrating a strong emission capability. Additionally, the concept of average emission angle is introduced to further characterize the emission performance of the cathode assembly. The inverted triangular channel surface presents the largest average emission angle of 22.1996°, although it exhibits the lowest collection current of 0.0067 mA, suggesting a relatively weaker emission capability. The insights garnered from this investigation lay a solid foundation for the surface process design of GaAs-based photocathodes.
真空通道GaAs光电阴极组件主要以其高发射电流和增强的结构稳定性而闻名,能够满足特定太赫兹真空器件的发射电流要求。它们通常为设计太赫兹真空应用和大型科学仪器中的电子源提供有价值的参考。通道的几何形状差异很大,为了探索不同通道设计对电子发射性能的影响,本研究采用CST仿真软件对矩形、倒梯形、倒三角形、梯形和弧形五种不同通道结构的电子发射特性进行了建模和分析。仿真结果表明,真空通道结构的构型对收集效率有显著影响。弧形通道结构的收集效率最高,达到98.34%,具有较强的发射能力。此外,为了进一步表征阴极组件的发射性能,还引入了平均发射角的概念。倒三角形沟道表面的平均发射角最大,为22.1996°,但其收集电流最小,为0.0067 mA,表明其发射能力相对较弱。本研究成果为gaas基光电阴极的表面工艺设计奠定了坚实的基础。
{"title":"An in-depth study of the impact of diverse vacuum channel geometries on enhancing photoelectron emission performance in photocathodes","authors":"Weiwei Sha ,&nbsp;Junju Zhang ,&nbsp;Li Li ,&nbsp;Yi Cai ,&nbsp;Guanghui Hao","doi":"10.1016/j.ssc.2026.116313","DOIUrl":"10.1016/j.ssc.2026.116313","url":null,"abstract":"<div><div>Vacuum channel GaAs photocathode assemblies, mainly known for their high emission current and enhanced structural stability, are capable of meeting the emission current requirements for specific terahertz vacuum devices. They commonly serve as a valuable reference for designing electron sources in both terahertz vacuum applications and large-scale scientific instruments. The geometries of the channels vary significantly, and to explore the impact of various channel designs on electron emission performance, this investigation employs CST simulation software to model and analyze the electron emission characteristics of five distinct channel geometries: rectangular, inverted trapezoidal, inverted triangular, trapezoidal, and arc-shaped channel structures. The simulation results indicate that the configuration of vacuum channel structures markedly influences collection efficiency. The arc-shaped channel structure exhibits the highest collection efficiency of 98.34 %, demonstrating a strong emission capability. Additionally, the concept of average emission angle is introduced to further characterize the emission performance of the cathode assembly. The inverted triangular channel surface presents the largest average emission angle of 22.1996°, although it exhibits the lowest collection current of 0.0067 mA, suggesting a relatively weaker emission capability. The insights garnered from this investigation lay a solid foundation for the surface process design of GaAs-based photocathodes.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116313"},"PeriodicalIF":2.4,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145921123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green vs. chemical cerium oxide nanoparticles (CeO2-NPs): Integrated assessment of synthesis pathways, structural properties, ferroelectric behavior, and biomedical applications 绿色与化学氧化铈纳米颗粒(CeO2-NPs):合成途径、结构特性、铁电行为和生物医学应用的综合评估
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-07 DOI: 10.1016/j.ssc.2025.116309
Ramprit Baitha , Anil Kumar Das , Sujit Kumar , Monalisa , Aniket Manash
The comparative physicochemical, optoelectronic, ferroelectric, and biological characteristics of cerium oxide nanoparticles produced by chemical and green methods are the main focus of this study. While chemical synthesis (C-CeO2-NPs) used ammonium hydroxide (NH4OH) via a simple precipitation process, green synthesis (G-CeO2-NPs) used an aqueous leaf extract of Ocimum sanctum (tulsi) as a natural reducing and capping agent. Using a variety of sophisticated characterization techniques, the resultant nanoparticles' physicochemical properties, optoelectronic behavior, stability, and ferroelectric performance were methodically examined. To evaluate the effectiveness of both fabrication methods, a comparative analysis of the synthesis yield was also carried out. Thermal analysis show that organically capped nanoparticles undergo more efficient dehydration and stabilization processes at reduced temperatures. XRD measurement show that increase in crystallite size due to flavonoid and other molecules in green synthesised CeO2. FTIR confirms the Ce-O bond stretching, hence confirming the formation. Optical studies show the effect of green synthesis of the band gap and its applications in photocatalytic industries. DLS measurement and with their favorable zeta potential values and improved colloidal stability, green-synthesised CeO2 nanoparticles show great promise for use in biological applications. Green-synthesised cerium oxide shows somewhat improved ferroelectric behavior. Antioxidant experiments showed that green-synthesised CeO2-NPs have better antioxidant capability than their chemically synthesised counterparts. Both chemically and green-synthesised CeO2-NPs demonstrated strong functional performance overall, but the green-synthesised nanoparticles outperformed the chemically synthesised ones, providing better-tuned properties for biomedical, electronic, and photocatalytic applications, as well as higher biological activity, lower toxicity, and eco-friendly behaviour.
比较化学法和绿色法制备的氧化铈纳米颗粒的理化、光电、铁电和生物学特性是本研究的主要重点。化学合成(C-CeO2-NPs)通过简单的沉淀过程使用氢氧化铵(NH4OH),而绿色合成(G-CeO2-NPs)使用酢浆草(tulsi)的水叶提取物作为天然还原和封盖剂。利用各种复杂的表征技术,系统地检测了所得纳米颗粒的物理化学性质、光电行为、稳定性和铁电性能。为了评价两种制备方法的有效性,还对合成收率进行了比较分析。热分析表明,在较低的温度下,有机覆盖的纳米颗粒经历了更有效的脱水和稳定过程。XRD测定结果表明,绿色合成的CeO2中黄酮类化合物等分子的加入使晶体尺寸增大。FTIR证实了Ce-O键的拉伸,从而证实了形成。光学研究表明了带隙的绿色合成及其在光催化工业中的应用。DLS测量和良好的zeta电位值和改进的胶体稳定性,绿色合成的CeO2纳米颗粒在生物应用中显示出巨大的前景。绿色合成的氧化铈的铁电性能有所改善。抗氧化实验表明,绿色合成的CeO2-NPs比化学合成的CeO2-NPs具有更好的抗氧化能力。化学合成和绿色合成的CeO2-NPs总体上都表现出强大的功能性能,但绿色合成的纳米颗粒优于化学合成的纳米颗粒,为生物医学、电子和光催化应用提供了更好的性能,同时具有更高的生物活性、更低的毒性和更环保的行为。
{"title":"Green vs. chemical cerium oxide nanoparticles (CeO2-NPs): Integrated assessment of synthesis pathways, structural properties, ferroelectric behavior, and biomedical applications","authors":"Ramprit Baitha ,&nbsp;Anil Kumar Das ,&nbsp;Sujit Kumar ,&nbsp;Monalisa ,&nbsp;Aniket Manash","doi":"10.1016/j.ssc.2025.116309","DOIUrl":"10.1016/j.ssc.2025.116309","url":null,"abstract":"<div><div>The comparative physicochemical, optoelectronic, ferroelectric, and biological characteristics of cerium oxide nanoparticles produced by chemical and green methods are the main focus of this study. While chemical synthesis (C-CeO<sub>2</sub>-NPs) used ammonium hydroxide (NH<sub>4</sub>OH) via a simple precipitation process, green synthesis (G-CeO<sub>2</sub>-NPs) used an aqueous leaf extract of <em>Ocimum sanctum</em> (tulsi) as a natural reducing and capping agent. Using a variety of sophisticated characterization techniques, the resultant nanoparticles' physicochemical properties, optoelectronic behavior, stability, and ferroelectric performance were methodically examined. To evaluate the effectiveness of both fabrication methods, a comparative analysis of the synthesis yield was also carried out. Thermal analysis show that organically capped nanoparticles undergo more efficient dehydration and stabilization processes at reduced temperatures. XRD measurement show that increase in crystallite size due to flavonoid and other molecules in green synthesised CeO<sub>2</sub>. FTIR confirms the Ce-O bond stretching, hence confirming the formation. Optical studies show the effect of green synthesis of the band gap and its applications in photocatalytic industries. DLS measurement and with their favorable zeta potential values and improved colloidal stability, green-synthesised CeO<sub>2</sub> nanoparticles show great promise for use in biological applications. Green-synthesised cerium oxide shows somewhat improved ferroelectric behavior. Antioxidant experiments showed that green-synthesised CeO<sub>2</sub>-NPs have better antioxidant capability than their chemically synthesised counterparts. Both chemically and green-synthesised CeO<sub>2</sub>-NPs demonstrated strong functional performance overall, but the green-synthesised nanoparticles outperformed the chemically synthesised ones, providing better-tuned properties for biomedical, electronic, and photocatalytic applications, as well as higher biological activity, lower toxicity, and eco-friendly behaviour.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116309"},"PeriodicalIF":2.4,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145972809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fe-doping-induced band structure modification and cryogenic phase stability in Cs2AgBiBr6 single crystals fe掺杂诱导Cs2AgBiBr6单晶能带结构修饰及低温相稳定性
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-07 DOI: 10.1016/j.ssc.2026.116319
Yanan Li , Xuejiao Wu , Jidong Deng , Jinbao Zhang
Despite its promise as a lead-free alternative, the practical application of Cs2AgBiBr6 in optoelectronics is limited by its wide band gap and detrimental intrinsic defects. To overcome these challenges, we synthesized Cs2AgBi0.5Fe0.5Br6 single crystals via a modified hydrothermal method. While both pristine and Fe-doped crystals undergo a structural phase transition near 125 K, Fe incorporation fundamentally alters its impact. The dopant simultaneously narrows the band gap in the high-temperature phase and suppresses the associated cryogenic structural instability. Our optical and X-ray structural studies establish Fe doping as a powerful strategy for tailoring the properties of Cs2AgBiBr6, advancing its potential for high-performance, low-temperature optoelectronic and spintronic devices.
尽管Cs2AgBiBr6有望成为一种无铅替代品,但其在光电子学中的实际应用受到其宽带隙和有害内在缺陷的限制。为了克服这些挑战,我们通过改进的水热法合成了Cs2AgBi0.5Fe0.5Br6单晶。虽然原始晶体和掺铁晶体在125 K附近都经历了结构相变,但铁的掺入从根本上改变了其影响。同时,掺杂剂缩小了高温相的带隙,抑制了相关的低温结构不稳定性。我们的光学和x射线结构研究表明,Fe掺杂是一种有效的策略,可以调整Cs2AgBiBr6的性能,提高其在高性能、低温光电和自旋电子器件方面的潜力。
{"title":"Fe-doping-induced band structure modification and cryogenic phase stability in Cs2AgBiBr6 single crystals","authors":"Yanan Li ,&nbsp;Xuejiao Wu ,&nbsp;Jidong Deng ,&nbsp;Jinbao Zhang","doi":"10.1016/j.ssc.2026.116319","DOIUrl":"10.1016/j.ssc.2026.116319","url":null,"abstract":"<div><div>Despite its promise as a lead-free alternative, the practical application of Cs<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>AgBiBr<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> in optoelectronics is limited by its wide band gap and detrimental intrinsic defects. To overcome these challenges, we synthesized Cs<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>AgBi<sub>0.5</sub>Fe<sub>0.5</sub>Br<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> single crystals via a modified hydrothermal method. While both pristine and Fe-doped crystals undergo a structural phase transition near 125 K, Fe incorporation fundamentally alters its impact. The dopant simultaneously narrows the band gap in the high-temperature phase and suppresses the associated cryogenic structural instability. Our optical and X-ray structural studies establish Fe doping as a powerful strategy for tailoring the properties of Cs<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>AgBiBr<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span>, advancing its potential for high-performance, low-temperature optoelectronic and spintronic devices.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116319"},"PeriodicalIF":2.4,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145921159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly accurate first-principles G0W0+BSE investigation of structural, elastic, mechanical, electronic and optical properties of Ba3AsI3 perovskite for solar energy harvesting 高精度的第一性原理G0W0+BSE研究用于太阳能收集的Ba3AsI3钙钛矿的结构、弹性、力学、电子和光学性质
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-06 DOI: 10.1016/j.ssc.2026.116316
Y.A. Sade , G. Babaji , Abdullahi Lawal , A.S. Gidado
This study presents a comprehensive investigation of the structural, electronic, elastic, mechanical, and optical properties of lead-free Ba3AsI3 perovskite using density functional theory (DFT) and many-body perturbation theory (MBPT) within the G0W0 approximation and Bethe-Salpeter equation (BSE). Our DFT result shows that the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with spin-orbit coupling (SOC) accurately reproduces the experimental lattice parameter, confirming the reliability of our computational approach. Using G0W0 calculations, we established that Ba3AsI3 is a direct bandgap material with a bandgap energy of 1.41 eV, making it highly suitable for optoelectronic applications. The calculated elastic constants and mechanical properties confirm the mechanical stability and brittle nature of Ba3AsI3. The calculated optical properties evaluated with BSE to account for electron-hole interactions reveal a redshift in the optical absorption spectrum, showing a prominent excitonic peak at 1.37 eV and a binding energy of 0.0237 eV. The absorption coefficient spectrum exhibits a strong absorption peak in the visible region, demonstrating the potential of Ba3AsI3 as a highly efficient absorber. The calculated electron energy loss function shows a maximum peak at 9.4 eV (G0W0+RPA) and 8.0 eV (G0W0+BSE), indicating energy loss due to inelastic interactions. The close agreement of our results with available theoretical and experimental data validates the accuracy and reliability of our computational approach. Overall, this study provides a comprehensive understanding of the physical properties of Ba3AsI3, laying a solid foundation for the design and optimization of Ba3AsI3-based devices for efficient solar energy harvesting and optoelectronic applications.
本研究利用密度泛函理论(DFT)和多体微扰理论(MBPT)在G0W0近似和Bethe-Salpeter方程(BSE)下对无铅Ba3AsI3钙钛矿的结构、电子、弹性、力学和光学性质进行了全面的研究。我们的DFT结果表明,带有自旋轨道耦合(SOC)的Perdew-Burke-Ernzerhof (PBE)交换相关泛函准确地再现了实验晶格参数,证实了我们的计算方法的可靠性。通过G0W0计算,我们确定Ba3AsI3是一种直接带隙材料,带隙能量为1.41 eV,非常适合光电应用。计算得到的弹性常数和力学性能证实了Ba3AsI3的力学稳定性和脆性。计算得到的光学性质用BSE评估以解释电子-空穴相互作用,结果显示在光学吸收光谱中出现了红移,在1.37 eV处显示出一个突出的激子峰,结合能为0.0237 eV。吸收系数谱在可见光区有很强的吸收峰,证明了Ba3AsI3作为高效吸收剂的潜力。计算得到的电子能量损失函数在9.4 eV (G0W0+RPA)和8.0 eV (G0W0+BSE)处有最大峰值,表明非弹性相互作用导致的能量损失。我们的结果与现有的理论和实验数据非常吻合,验证了我们计算方法的准确性和可靠性。总体而言,本研究全面了解了Ba3AsI3的物理性质,为设计和优化基于Ba3AsI3的高效太阳能收集和光电子应用器件奠定了坚实的基础。
{"title":"Highly accurate first-principles G0W0+BSE investigation of structural, elastic, mechanical, electronic and optical properties of Ba3AsI3 perovskite for solar energy harvesting","authors":"Y.A. Sade ,&nbsp;G. Babaji ,&nbsp;Abdullahi Lawal ,&nbsp;A.S. Gidado","doi":"10.1016/j.ssc.2026.116316","DOIUrl":"10.1016/j.ssc.2026.116316","url":null,"abstract":"<div><div>This study presents a comprehensive investigation of the structural, electronic, elastic, mechanical, and optical properties of lead-free Ba<sub>3</sub>AsI<sub>3</sub> perovskite using density functional theory (DFT) and many-body perturbation theory (MBPT) within the G<sub>0</sub>W<sub>0</sub> approximation and Bethe-Salpeter equation (BSE). Our DFT result shows that the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional with spin-orbit coupling (SOC) accurately reproduces the experimental lattice parameter, confirming the reliability of our computational approach. Using G<sub>0</sub>W<sub>0</sub> calculations, we established that Ba<sub>3</sub>AsI<sub>3</sub> is a direct bandgap material with a bandgap energy of 1.41 eV, making it highly suitable for optoelectronic applications. The calculated elastic constants and mechanical properties confirm the mechanical stability and brittle nature of Ba<sub>3</sub>AsI<sub>3.</sub> The calculated optical properties evaluated with BSE to account for electron-hole interactions reveal a redshift in the optical absorption spectrum, showing a prominent excitonic peak at 1.37 eV and a binding energy of 0.0237 eV. The absorption coefficient spectrum exhibits a strong absorption peak in the visible region, demonstrating the potential of Ba<sub>3</sub>AsI<sub>3</sub> as a highly efficient absorber. The calculated electron energy loss function shows a maximum peak at 9.4 eV (G<sub>0</sub>W<sub>0</sub>+RPA) and 8.0 eV (G<sub>0</sub>W<sub>0</sub>+BSE), indicating energy loss due to inelastic interactions. The close agreement of our results with available theoretical and experimental data validates the accuracy and reliability of our computational approach. Overall, this study provides a comprehensive understanding of the physical properties of Ba<sub>3</sub>AsI<sub>3</sub>, laying a solid foundation for the design and optimization of Ba3AsI3-based devices for efficient solar energy harvesting and optoelectronic applications.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116316"},"PeriodicalIF":2.4,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145921158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarizability of a Wigner crystal 维格纳晶体的极化率
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-06 DOI: 10.1016/j.ssc.2026.116318
Navinder Singh
We present a calculation of the imaginary part of the polarizability of a Wigner crystal using the Fluctuation–Dissipation theorem. The oscillations of the localized electrons about their equilibrium positions are treated in the harmonic approximation and the electric dipole-moment–dipole-moment correlator is computed by a normal mode expansion. The amplitudes and phases of the different normal modes are assumed to be statistically independent. In the first case, polarizability is computed in the high temperature limit, kBT>>ħΩW (here, ΩW is the Wigner frequency, analogous to the Debye frequency of the phonon case). In the second case, a general expression (valid both at high and low temperature limits) is obtained using a phenomenological damping model. The connection between our general expression and that of the Lorentz oscillator model is discussed. It turns out that the Wigner crystal would be transparent for applied frequencies greater than the Wigner frequency. A standard ellipsometry set-up can test the predictions of the theory.
本文用涨落耗散定理计算了维格纳晶体极化率的虚部。用谐波近似处理局域电子在其平衡位置上的振荡,并用正模展开计算电偶极矩-偶极矩相关器。假设不同正态模态的振幅和相位在统计上是独立的。在第一种情况下,极化率在高温极限下计算,kBT>>;ħΩW(这里,ΩW是维格纳频率,类似于声子情况下的德拜频率)。在第二种情况下,使用现象学阻尼模型获得了一般表达式(在高温和低温极限下都有效)。讨论了一般表达式与洛伦兹振子模型之间的联系。事实证明,当施加的频率大于维格纳频率时,维格纳晶体是透明的。一个标准的椭偏仪装置可以检验该理论的预测。
{"title":"Polarizability of a Wigner crystal","authors":"Navinder Singh","doi":"10.1016/j.ssc.2026.116318","DOIUrl":"10.1016/j.ssc.2026.116318","url":null,"abstract":"<div><div>We present a calculation of the imaginary part of the polarizability of a Wigner crystal using the Fluctuation–Dissipation theorem. The oscillations of the localized electrons about their equilibrium positions are treated in the harmonic approximation and the electric dipole-moment–dipole-moment correlator is computed by a normal mode expansion. The amplitudes and phases of the different normal modes are assumed to be statistically independent. In the first case, polarizability is computed in the high temperature limit, <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi><mo>&gt;</mo><mo>&gt;</mo><mo>ħ</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>W</mi></mrow></msub></mrow></math></span> (here, <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>W</mi></mrow></msub></math></span> is the Wigner frequency, analogous to the Debye frequency of the phonon case). In the second case, a general expression (valid both at high and low temperature limits) is obtained using a phenomenological damping model. The connection between our general expression and that of the Lorentz oscillator model is discussed. It turns out that the Wigner crystal would be transparent for applied frequencies greater than the Wigner frequency. A standard ellipsometry set-up can test the predictions of the theory.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116318"},"PeriodicalIF":2.4,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145921198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of NiB2O4 (B = Co, Fe, and Al) spinel nanoparticles: Structural, morphological, optical, and photocatalytic properties NiB2O4 (B = Co, Fe, Al)尖晶石纳米颗粒的结构、形态、光学和光催化性能的比较研究
IF 2.4 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Pub Date : 2026-01-03 DOI: 10.1016/j.ssc.2025.116307
Soumaia Khaldi , Abdelfattah Allaoui , Louiza Zenkhri , Safa Besra , Ece Tugba Saka , Cagla Akkol , Hakim Belkhalfa
In this work, nickel-based spinel oxides with the general formula NiB2O4 (B = Co, Fe, and Al) were synthesized via a facile combustion method to explore the role of B-site cations in tuning their physical and photocatalytic behavior. The main properties and oxidation states of the samples were comprehensively examined using various characterization tools, including X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structural study by XRD affirmed the formation of crystal spinel phases for NiCo2O4, NiFe2O4 and NiAl2O4 with a mean crystallite size between 22 and 44 nm. Morphological SEM images well defined the spherical and nanosized grain crystals for all the samples. BET analysis further indicated that NiFe2O4 possesses a high specific surface area of 78 m2 g−1 and a pore width of 11.5 nm. The optical results showed that the obtained samples have an energy bandgap (Eg) value of 2.25, 1.73, and 2.24 eV for NiCo2O4, NiFe2O4, and NiAl2O4, respectively. The synthesized spinel oxides were evaluated as photocatalysts under UV light for the degradation of methylene blue dye (MB) and 4-nitrophenol(4-NP). The photodegradation results show that NiFe2O4 spinel exhibits the high rates with an efficiency of 86.65 % for MB within 80 min and a conversion rate of 70 % for 4-NP in only 15 min.
本文采用易燃法合成了NiB2O4 (B = Co, Fe, Al)的镍基尖晶石氧化物,探讨了B位阳离子在调节其物理和光催化行为中的作用。利用x射线衍射(XRD)、扫描电子能谱(SEM-EDS)、紫外可见光谱(UV-visible spectroscopy)和x射线光电子能谱(XPS)等多种表征工具对样品的主要性质和氧化态进行了全面的表征。XRD结构研究证实NiCo2O4、NiFe2O4和NiAl2O4均形成尖晶石相,平均晶粒尺寸在22 ~ 44 nm之间。形貌扫描电镜图像清楚地定义了所有样品的球形和纳米级颗粒晶体。BET分析进一步表明,NiFe2O4具有78 m2 g−1的高比表面积和11.5 nm的孔径。光学结果表明,所得样品NiCo2O4、NiFe2O4和NiAl2O4的能带隙(Eg)值分别为2.25、1.73和2.24 eV。在紫外光下对合成的尖晶石氧化物作为光催化剂降解亚甲基蓝染料(MB)和4-硝基苯酚(4-NP)进行了评价。结果表明,NiFe2O4尖晶石具有较高的光降解效率,在80 min内对MB的转化率达到86.65%,在15 min内对4-NP的转化率达到70%。
{"title":"Comparative study of NiB2O4 (B = Co, Fe, and Al) spinel nanoparticles: Structural, morphological, optical, and photocatalytic properties","authors":"Soumaia Khaldi ,&nbsp;Abdelfattah Allaoui ,&nbsp;Louiza Zenkhri ,&nbsp;Safa Besra ,&nbsp;Ece Tugba Saka ,&nbsp;Cagla Akkol ,&nbsp;Hakim Belkhalfa","doi":"10.1016/j.ssc.2025.116307","DOIUrl":"10.1016/j.ssc.2025.116307","url":null,"abstract":"<div><div>In this work, nickel-based spinel oxides with the general formula NiB<sub>2</sub>O<sub>4</sub> (B = Co, Fe, and Al) were synthesized via a facile combustion method to explore the role of B-site cations in tuning their physical and photocatalytic behavior. The main properties and oxidation states of the samples were comprehensively examined using various characterization tools, including X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). The structural study by XRD affirmed the formation of crystal spinel phases for NiCo<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub> and NiAl<sub>2</sub>O<sub>4</sub> with a mean crystallite size between 22 and 44 nm. Morphological SEM images well defined the spherical and nanosized grain crystals for all the samples. BET analysis further indicated that NiFe<sub>2</sub>O<sub>4</sub> possesses a high specific surface area of 78 m<sup>2</sup> g<sup>−1</sup> and a pore width of 11.5 nm. The optical results showed that the obtained samples have an energy bandgap (Eg) value of 2.25, 1.73, and 2.24 eV for NiCo<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub>, and NiAl<sub>2</sub>O<sub>4</sub>, respectively. The synthesized spinel oxides were evaluated as photocatalysts under UV light for the degradation of methylene blue dye (MB) and 4-nitrophenol(4-NP). The photodegradation results show that NiFe<sub>2</sub>O<sub>4</sub> spinel exhibits the high rates with an efficiency of 86.65 % for MB within 80 min and a conversion rate of 70 % for 4-NP in only 15 min.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"409 ","pages":"Article 116307"},"PeriodicalIF":2.4,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145921122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solid State Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1