首页 > 最新文献

2022 IEEE 33rd Magnetic Recording Conference (TMRC)最新文献

英文 中文
Hysteresis loops of recording media grains under the influence of high frequency fields 高频场作用下记录介质颗粒的磁滞回线
Pub Date : 2022-08-01 DOI: 10.1109/tmrc56419.2022.9918539
S. Greaves, Y. Kanai
A potential technology for use in future hard disk drives is microwave-assisted magnetic recording (MAMR). In a MAMR drive a spin-torque oscillator (STO) is integrated into the write head and applies a high frequency (HF) magnetic field to the recording medium along with the field from the write head. The HF field reduces the switching field of the medium, allowing media with higher uniaxial anisotropy to be used. As the write head moves over the recording medium the HF field seen by the medium grains changes from elliptical to circular to linear and back again. In this work the influence of circular, elliptical and linear HF fields on recording media was examined by calculating hysteresis loops for single and multiple grains.
微波辅助磁记录(MAMR)是一种潜在的用于未来硬盘驱动器的技术。在MAMR驱动器中,自旋扭矩振荡器(STO)集成到写入头中,并与写入头的磁场一起对记录介质施加高频(HF)磁场。高频场减小了介质的开关场,允许使用具有较高单轴各向异性的介质。当写入磁头在记录介质上移动时,介质颗粒看到的高频场从椭圆变为圆形再变为线性,然后再返回。本文通过计算单粒和多粒的磁滞回线,研究了圆形、椭圆形和线性高频场对记录介质的影响。
{"title":"Hysteresis loops of recording media grains under the influence of high frequency fields","authors":"S. Greaves, Y. Kanai","doi":"10.1109/tmrc56419.2022.9918539","DOIUrl":"https://doi.org/10.1109/tmrc56419.2022.9918539","url":null,"abstract":"A potential technology for use in future hard disk drives is microwave-assisted magnetic recording (MAMR). In a MAMR drive a spin-torque oscillator (STO) is integrated into the write head and applies a high frequency (HF) magnetic field to the recording medium along with the field from the write head. The HF field reduces the switching field of the medium, allowing media with higher uniaxial anisotropy to be used. As the write head moves over the recording medium the HF field seen by the medium grains changes from elliptical to circular to linear and back again. In this work the influence of circular, elliptical and linear HF fields on recording media was examined by calculating hysteresis loops for single and multiple grains.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127940065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Network Equalization for Asynchronous Multitrack Detection in TDMR TDMR中异步多轨检测的神经网络均衡
Pub Date : 2022-07-06 DOI: 10.1109/TMRC56419.2022.9918163
E. Sadeghian
The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.
磁记录中多读卡器的出现开启了用更有前途的多轨道检测架构取代当前行业单轨道检测的可能性。我们提出了第一个解决方案,即广义部分响应最大似然(GPRML)架构,它扩展了传统的PRML范式,以联合检测多个异步轨迹。在本文中,我们提出用神经网络均衡器取代GPRML架构中传统的通信理论多输入多输出均衡器,以更好地适应底层信道的非线性。我们在现实的二维磁记录通道上评估了所提出的均衡策略,发现所提出的均衡器优于传统的线性均衡器,误码率降低了37%,面密度增加了33%。
{"title":"Neural Network Equalization for Asynchronous Multitrack Detection in TDMR","authors":"E. Sadeghian","doi":"10.1109/TMRC56419.2022.9918163","DOIUrl":"https://doi.org/10.1109/TMRC56419.2022.9918163","url":null,"abstract":"The advent of multiple readers in magnetic recording opens the possibility of replacing the current industry's single-track detection with the more promising multitrack detection architectures. We have proposed a first solution, a generalized partial-response maximum-likelihood (GPRML) architecture, that extends the conventional PRML paradigm to jointly detect multiple asynchronous tracks. In this paper, we propose to replace the conventional communication-theoretic multiple-input multiple-output equalizer in the GPRML architecture with a neural network equalizer for better adaption to the nonlinearity of the underlying channel. We evaluate the proposed equalization strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed equalizer outperforms the conventional linear equalizer, by a 37% reduction in the bit-error rate and a 33% gain in the areal density.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117262441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of a Binary Neural Network on a Passive Array of Magnetic Tunnel Junctions 二值神经网络在无源磁隧道结阵列上的实现
Pub Date : 2021-12-16 DOI: 10.1109/TMRC56419.2022.9918590
Jonathan M. Goodwill, N. Prasad, B. Hoskins, M. Daniels, A. Madhavan, L. Wan, T. Santos, M. Tran, J. Katine, P. Braganca, M. Stiles, J. McClelland
Magnetic tunnel junctions (MTJs) provide an attractive platform for implementing neural networks because of their simplicity, non-volatility, and scalability. However, in hardware realizations, device variations, write errors, and parasitic resistance degrade performance. To quantify such effects, we perform inference experiments on a 2-layer perceptron constructed from a 15 x 15 passive array of MTJs, examining classification accuracy and write fidelity. Despite imperfections, we achieve median accuracy of 95.3% with proper tuning of network parameters. The success of this tuning process shows that new metrics are needed to characterize and optimize networks reproduced in mixed signal hardware.
磁隧道结(MTJs)因其简单、无波动性和可扩展性而为实现神经网络提供了一个有吸引力的平台。然而,在硬件实现中,器件变化、写错误和寄生电阻会降低性能。为了量化这种影响,我们在一个由15 x 15被动mtj阵列构建的2层感知器上进行了推理实验,检查了分类精度和写入保真度。尽管存在缺陷,但通过适当调整网络参数,我们实现了95.3%的中位数精度。这种调整过程的成功表明,需要新的指标来表征和优化在混合信号硬件中再现的网络。
{"title":"Implementation of a Binary Neural Network on a Passive Array of Magnetic Tunnel Junctions","authors":"Jonathan M. Goodwill, N. Prasad, B. Hoskins, M. Daniels, A. Madhavan, L. Wan, T. Santos, M. Tran, J. Katine, P. Braganca, M. Stiles, J. McClelland","doi":"10.1109/TMRC56419.2022.9918590","DOIUrl":"https://doi.org/10.1109/TMRC56419.2022.9918590","url":null,"abstract":"Magnetic tunnel junctions (MTJs) provide an attractive platform for implementing neural networks because of their simplicity, non-volatility, and scalability. However, in hardware realizations, device variations, write errors, and parasitic resistance degrade performance. To quantify such effects, we perform inference experiments on a 2-layer perceptron constructed from a 15 x 15 passive array of MTJs, examining classification accuracy and write fidelity. Despite imperfections, we achieve median accuracy of 95.3% with proper tuning of network parameters. The success of this tuning process shows that new metrics are needed to characterize and optimize networks reproduced in mixed signal hardware.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133299248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
2022 IEEE 33rd Magnetic Recording Conference (TMRC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1