Pub Date : 2021-08-28DOI: 10.1142/s1756973721410018
Fanli Liu, Moran Wang
Transport mechanisms of small droplets on walls in micropores become significant for applications in energy, resource and biomedical engineering, however, a suitable numerical tool remains challenging. Macroscopic approach is ideal both in computing cost and simplicity but its applicability is doubted for nanoscale droplet, yet no clear evaluation on when exactly does it become invalid has been made. This work evaluates the applicability of macroscopic approach for the displacing process of droplet in a micropore and investigates relevant size effects, by comparing the simulation results of multiscale modeling and macroscopic method. Three types of size effects affecting the displacement results are identified: Laplace pressure, low interfacial density, and breakdown of macroscopic description. For the system studied, the Laplace pressure dominates for relatively big droplet, then low density region becomes significant for drop diameter smaller than 18 times molecule diameter, and finally macroscopic description gradually fails for drop diameter smaller than 13 times molecule diameter. We further investigate the influences of system scale and fluid type on these size effects and discuss the relative importance of each size effect under different conditions. Results indicate that traditional macroscopic approach may be invalid even when continuum assumption still holds due to other size effects, and corrections for those effects can be made to extend the applicability of macroscopic method.
{"title":"Size Effects on Droplet Displacing Process in Micropores by Multiscale Modeling","authors":"Fanli Liu, Moran Wang","doi":"10.1142/s1756973721410018","DOIUrl":"https://doi.org/10.1142/s1756973721410018","url":null,"abstract":"Transport mechanisms of small droplets on walls in micropores become significant for applications in energy, resource and biomedical engineering, however, a suitable numerical tool remains challenging. Macroscopic approach is ideal both in computing cost and simplicity but its applicability is doubted for nanoscale droplet, yet no clear evaluation on when exactly does it become invalid has been made. This work evaluates the applicability of macroscopic approach for the displacing process of droplet in a micropore and investigates relevant size effects, by comparing the simulation results of multiscale modeling and macroscopic method. Three types of size effects affecting the displacement results are identified: Laplace pressure, low interfacial density, and breakdown of macroscopic description. For the system studied, the Laplace pressure dominates for relatively big droplet, then low density region becomes significant for drop diameter smaller than 18 times molecule diameter, and finally macroscopic description gradually fails for drop diameter smaller than 13 times molecule diameter. We further investigate the influences of system scale and fluid type on these size effects and discuss the relative importance of each size effect under different conditions. Results indicate that traditional macroscopic approach may be invalid even when continuum assumption still holds due to other size effects, and corrections for those effects can be made to extend the applicability of macroscopic method.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"1 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41706352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1142/S1756973721500049
Mohamed Boubchir, R. Boubchir, H. Aourag
In this paper, we report a comprehensive and systematic study for predicting the formability of double halide perovskites. Besides the tolerance factor, several complementary criteria for the formation and lattice distortion have been developed and compared with a throughout multivariate technique based on the principal component analysis (PCA) and the partial least square (PLS) methods. Some empirical equations expressing the relationships between the different ionic radii and the electronegativities and the lattice constants of double halide perovskites have been found.
{"title":"The Use of Principal Component Analysis for the Prediction of Double Halide Perovskites A2BX6","authors":"Mohamed Boubchir, R. Boubchir, H. Aourag","doi":"10.1142/S1756973721500049","DOIUrl":"https://doi.org/10.1142/S1756973721500049","url":null,"abstract":"In this paper, we report a comprehensive and systematic study for predicting the formability of double halide perovskites. Besides the tolerance factor, several complementary criteria for the formation and lattice distortion have been developed and compared with a throughout multivariate technique based on the principal component analysis (PCA) and the partial least square (PLS) methods. Some empirical equations expressing the relationships between the different ionic radii and the electronegativities and the lattice constants of double halide perovskites have been found.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47392672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-07DOI: 10.1142/s1756973721500062
Parvaiz Ahmad Naik, K. M. Owolabi, J. Zu, Mehraj-ud-din Naik
COVID-19 disease, a deadly pandemic ravaging virtually throughout the world today, is undoubtedly a great calamity to human existence. There exists no complete curative medicine or successful vaccines that could be used for the complete control of this deadly pandemic at the moment. Consequently, the study of the trends of this pandemic is critical and of great importance for disease control and risk management. Computation of the basic reproduction number by means of mathematical modeling can be helpful in estimating the potential and severity of an outbreak and providing insightful information which is useful to identify disease intensity and necessary interventions. Considering the enormity of the challenge and the burdens which the spread of this COVID-19 disease placed on healthcare system, the present paper attempts to study the pattern and the trend of spread of this disease and prescribes a mathematical model which governs COVID-19 pandemic using Caputo type derivative. Local stability of the equilibria is also discussed in the paper. Some numerical simulations are given to illustrate the analytical results. The obtained results shows that applied numerical technique is computationally strong for modeling COVID-19 pandemic.
{"title":"Modeling the Transmission Dynamics of COVID-19 Pandemic in Caputo Type Fractional Derivative","authors":"Parvaiz Ahmad Naik, K. M. Owolabi, J. Zu, Mehraj-ud-din Naik","doi":"10.1142/s1756973721500062","DOIUrl":"https://doi.org/10.1142/s1756973721500062","url":null,"abstract":"COVID-19 disease, a deadly pandemic ravaging virtually throughout the world today, is undoubtedly a great calamity to human existence. There exists no complete curative medicine or successful vaccines that could be used for the complete control of this deadly pandemic at the moment. Consequently, the study of the trends of this pandemic is critical and of great importance for disease control and risk management. Computation of the basic reproduction number by means of mathematical modeling can be helpful in estimating the potential and severity of an outbreak and providing insightful information which is useful to identify disease intensity and necessary interventions. Considering the enormity of the challenge and the burdens which the spread of this COVID-19 disease placed on healthcare system, the present paper attempts to study the pattern and the trend of spread of this disease and prescribes a mathematical model which governs COVID-19 pandemic using Caputo type derivative. Local stability of the equilibria is also discussed in the paper. Some numerical simulations are given to illustrate the analytical results. The obtained results shows that applied numerical technique is computationally strong for modeling COVID-19 pandemic.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45787115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1142/S1756973721500050
G. Statti, A. Mehmanparast, R. Biswal, C. Rizzo
Monopile foundations contain welding residual stresses and are widely used in industry to support offshore wind turbines (OWTs). The monopiles are subjected to hammering loads during installation and cyclic loads during operation, therefore the influence of residual stress redistribution as a result of fatigue cycles must be evaluated in these structures. The existing empirical models to predict the residual stress redistribution in the presence of cyclic loading conditions are strongly dependent on the material, welding process and loading conditions. Hence, there is a need to predict the residual stress redistribution using finite element simulations. In this study numerical analyses have been conducted to predict the initial state of residual stress in a simplified weld geometry and examine the influence of subsequent cyclic loads on the relaxation behavior in residual stress profiles. The results have shown that fatigue cycles have a severe effect on residual stress relaxation with the greatest reduction in residual stress values observed in the first cycle. Moreover, the numerical prediction results have shown that the stress amplitude plays a key role in the extent of residual stress relaxation in welded structures.
{"title":"Evaluation of Cyclic Loading Effects on Residual Stress Relaxation in Offshore Wind Welded Structures","authors":"G. Statti, A. Mehmanparast, R. Biswal, C. Rizzo","doi":"10.1142/S1756973721500050","DOIUrl":"https://doi.org/10.1142/S1756973721500050","url":null,"abstract":"Monopile foundations contain welding residual stresses and are widely used in industry to support offshore wind turbines (OWTs). The monopiles are subjected to hammering loads during installation and cyclic loads during operation, therefore the influence of residual stress redistribution as a result of fatigue cycles must be evaluated in these structures. The existing empirical models to predict the residual stress redistribution in the presence of cyclic loading conditions are strongly dependent on the material, welding process and loading conditions. Hence, there is a need to predict the residual stress redistribution using finite element simulations. In this study numerical analyses have been conducted to predict the initial state of residual stress in a simplified weld geometry and examine the influence of subsequent cyclic loads on the relaxation behavior in residual stress profiles. The results have shown that fatigue cycles have a severe effect on residual stress relaxation with the greatest reduction in residual stress values observed in the first cycle. Moreover, the numerical prediction results have shown that the stress amplitude plays a key role in the extent of residual stress relaxation in welded structures.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45915448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01DOI: 10.1142/s1756973721500037
Zixu Guo, Ziyuan Song, Dawei Huang, Xiaojun Yan
In this paper, a digital image correlation (DIC) method is developed and applied on film cooling holes in the submillimeter scale in high temperature. Compared with the traditional DIC method, the speckle patterning method and the optical system are improved. In detail, a kind of high temperature-resistant black paint is selected as the basecoat, and the white ZrO2 particles are evenly distributed on the specimen using high-pressure splashing method. Besides, to eliminate the radiation effect of the high-temperature specimen, the blue light source is used to illuminate the specimen, and the optical bandpass filter is placed in front of the camera to allow the blue light passing. In order to verify the DIC method, the strain measurement on a specimen with single skew hole is performed. The relative error in high temperature of the maximum strain between the measurement results and the numerical simulation results given by the finite element method (FEM) is 12%. The strain concentration factor of the single skew hole is measured as 1.83. Finally, the developed method is applied to the strain measurement of the structure with multiple film cooling holes in 870°C. The X-shape strain distribution can be observed at the hole with maximum stress, which suggests that the strain field of multiple holes has coupling effect. In addition, the strain concentration factor of multiple film cooling holes increases to 2.34.
{"title":"A High-Temperature Digital Image Correlation Method and its Application on Strain Measurement of Film Cooling Holes","authors":"Zixu Guo, Ziyuan Song, Dawei Huang, Xiaojun Yan","doi":"10.1142/s1756973721500037","DOIUrl":"https://doi.org/10.1142/s1756973721500037","url":null,"abstract":"In this paper, a digital image correlation (DIC) method is developed and applied on film cooling holes in the submillimeter scale in high temperature. Compared with the traditional DIC method, the speckle patterning method and the optical system are improved. In detail, a kind of high temperature-resistant black paint is selected as the basecoat, and the white ZrO2 particles are evenly distributed on the specimen using high-pressure splashing method. Besides, to eliminate the radiation effect of the high-temperature specimen, the blue light source is used to illuminate the specimen, and the optical bandpass filter is placed in front of the camera to allow the blue light passing. In order to verify the DIC method, the strain measurement on a specimen with single skew hole is performed. The relative error in high temperature of the maximum strain between the measurement results and the numerical simulation results given by the finite element method (FEM) is 12%. The strain concentration factor of the single skew hole is measured as 1.83. Finally, the developed method is applied to the strain measurement of the structure with multiple film cooling holes in 870°C. The X-shape strain distribution can be observed at the hole with maximum stress, which suggests that the strain field of multiple holes has coupling effect. In addition, the strain concentration factor of multiple film cooling holes increases to 2.34.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44209615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This article was migrated. The article was marked as recommended. Background Safe handover is crucial in healthcare and is taught in undergraduate and pre-vocational training curricula. It is now considered an Entrustable Professional Activity (EPA). Handover assessment tools have been developed but the correlation between the perceived quality of a handover and its accuracy has not been studied. Aims This paper aims to determine the correlation between the perceived quality and the accuracy and safety of handover. Methods This descriptive, quantitative study looked at medical students on long-term rural clinical placements who gave clinical handovers to supervisors. The supervisors scored the handovers using the Clinical Handover Assessment Tool (CHAT) and assessed the accuracy and safety of the handover, after seeing the patient. The correlation between handover scores, accuracy and safety was calculated using Cramer's V coefficient. Results 114 handovers from 25 students were assessed. The correlation coefficient for a global assessment of quality and accuracy was 0.585 and for safety was 0.583, considered large effects (>0.35). This also held using a checklist quality assessment but less strongly: 0.419, 0.363 respectively. Conclusion These findings suggest that handovers that sound 'good' are likely to be accurate: clinicians can 'trust their gut-feeling'. A high quality handover reflects more than the trainee'. clinical reasoning, communication and organisational skills: it suggests that they can provide accurate and safe handover. This supports the use of global assessments of handover as an important part of the multi-source feedback required for summative entrustment decision-making.
{"title":"It sounds like a good handover but can I trust it: the correlation between perceived quality and accuracy?","authors":"Malcolm Moore, Suzanne Bain-Donohue, Molly Barry, Phillip Gray","doi":"10.15694/mep.2021.000102.1","DOIUrl":"10.15694/mep.2021.000102.1","url":null,"abstract":"<p><p>This article was migrated. The article was marked as recommended. Background Safe handover is crucial in healthcare and is taught in undergraduate and pre-vocational training curricula. It is now considered an Entrustable Professional Activity (EPA). Handover assessment tools have been developed but the correlation between the perceived quality of a handover and its accuracy has not been studied. Aims This paper aims to determine the correlation between the perceived quality and the accuracy and safety of handover. Methods This descriptive, quantitative study looked at medical students on long-term rural clinical placements who gave clinical handovers to supervisors. The supervisors scored the handovers using the Clinical Handover Assessment Tool (CHAT) and assessed the accuracy and safety of the handover, after seeing the patient. The correlation between handover scores, accuracy and safety was calculated using Cramer's V coefficient. Results 114 handovers from 25 students were assessed. The correlation coefficient for a global assessment of quality and accuracy was 0.585 and for safety was 0.583, considered large effects (>0.35). This also held using a checklist quality assessment but less strongly: 0.419, 0.363 respectively. Conclusion These findings suggest that handovers that sound 'good' are likely to be accurate: clinicians can 'trust their gut-feeling'. A high quality handover reflects more than the trainee'. clinical reasoning, communication and organisational skills: it suggests that they can provide accurate and safe handover. This supports the use of global assessments of handover as an important part of the multi-source feedback required for summative entrustment decision-making.</p>","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"08 1","pages":"102"},"PeriodicalIF":0.0,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67175634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1142/S1756973721500013
T. Naraghi, M. Najib, A. S. Nobari, K. Nikbin
Fitness-for-service (FFS) assessment is a common evaluation methodology in oil and gas industries to assess the integrity of in-service structures that may contain flaws, metal thinning and pitting damage. However, given the level of unknowns or missing information in the industry deterministic predictions are unacceptable and invariably the lower bound values could also be substantially conservative. The aim of this work is to develop a generic process to ensure, within a level of confidence, the operational safety and integrity of aging gas or oil pipelines sections based on available data. Fitness for service procedure according to “API 579-1/ASME FFS-1” is performed using local metal loss and micro-cracking to predict a range of safe life for the ageing pipeline operated for around 40 years. The mean value predictions of the present assessment indicate that the flaws away from the weld are within an acceptable boundary which implies the pipes would be fit to continue in operation and at least have 10 years remaining life, whilst the flaws near the weld need to be repaired as soon as possible. This is based on the best average values for the NDE and material property results available. However, adopting extreme caution in the analysis will render the pipes obsolete and ready for replacement. Understanding the risks to be taken in such situations becomes an expert system decision based not just on the FFS analysis but on both quantitative historical data, loading history, material degradation due to environment, corrosion rates and metallurgical analysis in addition to qualitative experience collected from other databases and pipes failure data. Beyond such a procedure the safe option would be a full burst pressure testing of the length of pipeline in question to identify possible leaks of old pipes.
{"title":"Fitness-for-Service Assessment Approach for Ageing Pipeline Section Based on Sparse Historical Data","authors":"T. Naraghi, M. Najib, A. S. Nobari, K. Nikbin","doi":"10.1142/S1756973721500013","DOIUrl":"https://doi.org/10.1142/S1756973721500013","url":null,"abstract":"Fitness-for-service (FFS) assessment is a common evaluation methodology in oil and gas industries to assess the integrity of in-service structures that may contain flaws, metal thinning and pitting damage. However, given the level of unknowns or missing information in the industry deterministic predictions are unacceptable and invariably the lower bound values could also be substantially conservative. The aim of this work is to develop a generic process to ensure, within a level of confidence, the operational safety and integrity of aging gas or oil pipelines sections based on available data. Fitness for service procedure according to “API 579-1/ASME FFS-1” is performed using local metal loss and micro-cracking to predict a range of safe life for the ageing pipeline operated for around 40 years. The mean value predictions of the present assessment indicate that the flaws away from the weld are within an acceptable boundary which implies the pipes would be fit to continue in operation and at least have 10 years remaining life, whilst the flaws near the weld need to be repaired as soon as possible. This is based on the best average values for the NDE and material property results available. However, adopting extreme caution in the analysis will render the pipes obsolete and ready for replacement. Understanding the risks to be taken in such situations becomes an expert system decision based not just on the FFS analysis but on both quantitative historical data, loading history, material degradation due to environment, corrosion rates and metallurgical analysis in addition to qualitative experience collected from other databases and pipes failure data. Beyond such a procedure the safe option would be a full burst pressure testing of the length of pipeline in question to identify possible leaks of old pipes.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"12 1","pages":"2150001"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44582182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-01DOI: 10.1142/S1756973721500025
Xiao-yi Qin, G. Han, S. Xia, Weijie Liu, D. Lin
This paper reports the modeling and simulation of cyclic behavior of single crystal nickel-based superalloy by using the crystal plasticity finite element method. Material constitutive model based on the crystal plasticity theory is developed and is implemented in a parallel way as user subroutine modules embedded in the commercial Abaqus[Formula: see text] software. For simplicity in calibration and without loss of generality, the crystal plasticity constitutive relationship used in this work takes the form that only contains a few parameters. The parameters are optimized by using the Powell algorithm. We employ the calibrated constitutive model with the finite element solver on a cuboid and a blade to simulate cyclic and anisotropic properties of single crystal superalloy. Results show that the predicted stress–strain curves are in good agreement with the experimental measurements, and anisotropic results are presented in both elastic and plastic regions.
{"title":"Crystal Plasticity Finite Element Method for Cyclic Behavior of Single Crystal Nickel-Based Superalloy","authors":"Xiao-yi Qin, G. Han, S. Xia, Weijie Liu, D. Lin","doi":"10.1142/S1756973721500025","DOIUrl":"https://doi.org/10.1142/S1756973721500025","url":null,"abstract":"This paper reports the modeling and simulation of cyclic behavior of single crystal nickel-based superalloy by using the crystal plasticity finite element method. Material constitutive model based on the crystal plasticity theory is developed and is implemented in a parallel way as user subroutine modules embedded in the commercial Abaqus[Formula: see text] software. For simplicity in calibration and without loss of generality, the crystal plasticity constitutive relationship used in this work takes the form that only contains a few parameters. The parameters are optimized by using the Powell algorithm. We employ the calibrated constitutive model with the finite element solver on a cuboid and a blade to simulate cyclic and anisotropic properties of single crystal superalloy. Results show that the predicted stress–strain curves are in good agreement with the experimental measurements, and anisotropic results are presented in both elastic and plastic regions.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"12 1","pages":"2150002"},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47496856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-20DOI: 10.1142/s1756973720500092
Haoliang Zhou, A. Mehmanparast, K. Nikbin
Reheat cracking in an ex-service Type 316H stainless steel steam header component has been investigated in this study. The examined steam header was in service for 87,790[Formula: see text]h and the cracks in this component were found in the vicinity of the weld toe. The root cause of this type of failure was due to the welding residual stresses. The welding-induced residual stresses had been present in the header at the early stage of the operation and were released during service. In this paper, a novel technique has been proposed to simulate the residual stress distribution normal to the crack direction by applying remote fixed displacement boundary conditions in an axisymmetric model. This approach can simulate the presence of residual stresses in actual components without the need to develop full weld simulation to quantify them. The predicted residual stress levels and distributions normal to the crack direction have been found in good agreement with the measured residual stresses available in the literature for a similar header. The creep crack growth (CCG) rates have been characterized using the fracture mechanics [Formula: see text] parameter and estimated using predictive models.
{"title":"Prediction of Reheat Cracking Behavior in a Service Exposed 316H Steam Header","authors":"Haoliang Zhou, A. Mehmanparast, K. Nikbin","doi":"10.1142/s1756973720500092","DOIUrl":"https://doi.org/10.1142/s1756973720500092","url":null,"abstract":"Reheat cracking in an ex-service Type 316H stainless steel steam header component has been investigated in this study. The examined steam header was in service for 87,790[Formula: see text]h and the cracks in this component were found in the vicinity of the weld toe. The root cause of this type of failure was due to the welding residual stresses. The welding-induced residual stresses had been present in the header at the early stage of the operation and were released during service. In this paper, a novel technique has been proposed to simulate the residual stress distribution normal to the crack direction by applying remote fixed displacement boundary conditions in an axisymmetric model. This approach can simulate the presence of residual stresses in actual components without the need to develop full weld simulation to quantify them. The predicted residual stress levels and distributions normal to the crack direction have been found in good agreement with the measured residual stresses available in the literature for a similar header. The creep crack growth (CCG) rates have been characterized using the fracture mechanics [Formula: see text] parameter and estimated using predictive models.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45030766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-02DOI: 10.1142/s1756973720500080
M. Cascio, M. Grifò, A. Milazzo, I. Benedetti
The Virtual Element Method (VEM) is a recent numerical technique capable of dealing with very general polygonal and polyhedral mesh elements, including irregular or non-convex ones. Because of this feature, the VEM ensures noticeable simplification in the data preparation stage of the analysis, especially for problems whose analysis domain features complex geometries, as in the case of computational micro-mechanics problems. The Boundary Element Method (BEM) is a well known, extensively used and effective numerical technique for the solution of several classes of problems in science and engineering. Due to its underlying formulation, the BEM allows reducing the dimensionality of the problem, resulting in substantial simplification of the pre-processing stage and in the reduction of the computational effort, without jeopardizing the solution accuracy. In this contribution, we explore the possibility of a coupling VEM and BEM for computational homogenization of heterogeneous materials with complex microstructures. The test morphologies consist of unit cells with irregularly shaped inclusions, representative e.g., of a fiber-reinforced polymer composite. The BEM is used to model the inclusions, while the VEM is used to model the surrounding matrix material. Benchmark finite element solutions are used to validate the analysis results.
{"title":"Computational Homogenization of Heterogeneous Materials by a Novel Hybrid Numerical Scheme","authors":"M. Cascio, M. Grifò, A. Milazzo, I. Benedetti","doi":"10.1142/s1756973720500080","DOIUrl":"https://doi.org/10.1142/s1756973720500080","url":null,"abstract":"The Virtual Element Method (VEM) is a recent numerical technique capable of dealing with very general polygonal and polyhedral mesh elements, including irregular or non-convex ones. Because of this feature, the VEM ensures noticeable simplification in the data preparation stage of the analysis, especially for problems whose analysis domain features complex geometries, as in the case of computational micro-mechanics problems. The Boundary Element Method (BEM) is a well known, extensively used and effective numerical technique for the solution of several classes of problems in science and engineering. Due to its underlying formulation, the BEM allows reducing the dimensionality of the problem, resulting in substantial simplification of the pre-processing stage and in the reduction of the computational effort, without jeopardizing the solution accuracy. In this contribution, we explore the possibility of a coupling VEM and BEM for computational homogenization of heterogeneous materials with complex microstructures. The test morphologies consist of unit cells with irregularly shaped inclusions, representative e.g., of a fiber-reinforced polymer composite. The BEM is used to model the inclusions, while the VEM is used to model the surrounding matrix material. Benchmark finite element solutions are used to validate the analysis results.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48628850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}