首页 > 最新文献

International Journal of Cognitive Informatics and Natural Intelligence最新文献

英文 中文
Violence Detection With Two-Stream Neural Network Based on C3D 基于C3D的双流神经网络暴力检测
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.287601
zanzan Lu, Xu Xia, Hongrun Wu, Chen Yang
In recent years, violence detection has gradually turned into an important research area in computer vision, and have proposed many models with high accuracy. However, the unsatisfactory generalization ability of these methods over different datasets. In this paper, the authors propose a violence detection method based on C3D two-stream network for spatiotemporal features. Firstly, the authors preprocess the video data of RGB stream and optical stream respectively. Secondly, the authors feed the data into two C3D networks to extract features from the RGB flow and the optical flow respectively. Third, the authors fuse the features extracted by the two networks to obtain a final prediction result. To testify the performance of the proposed model, four different datasets (two public datasets and two self-built datasets) are selected in this paper. The experimental results show that our model has good generalization ability compared to state-of-the-art methods, since it not only has good ability on large-scale datasets, but also performs well on small-scale datasets.
近年来,暴力检测逐渐成为计算机视觉的一个重要研究领域,并提出了许多精度较高的模型。然而,这些方法在不同数据集上的泛化能力并不理想。本文提出了一种基于C3D双流网络的时空特征暴力检测方法。首先,分别对RGB流和光流视频数据进行预处理。其次,将数据输入到两个C3D网络中,分别从RGB流和光流中提取特征;第三,将两种网络提取的特征进行融合,得到最终的预测结果。为了验证该模型的性能,本文选择了四个不同的数据集(两个公共数据集和两个自建数据集)。实验结果表明,与现有方法相比,我们的模型具有良好的泛化能力,不仅在大规模数据集上具有良好的泛化能力,而且在小规模数据集上也表现良好。
{"title":"Violence Detection With Two-Stream Neural Network Based on C3D","authors":"zanzan Lu, Xu Xia, Hongrun Wu, Chen Yang","doi":"10.4018/ijcini.287601","DOIUrl":"https://doi.org/10.4018/ijcini.287601","url":null,"abstract":"In recent years, violence detection has gradually turned into an important research area in computer vision, and have proposed many models with high accuracy. However, the unsatisfactory generalization ability of these methods over different datasets. In this paper, the authors propose a violence detection method based on C3D two-stream network for spatiotemporal features. Firstly, the authors preprocess the video data of RGB stream and optical stream respectively. Secondly, the authors feed the data into two C3D networks to extract features from the RGB flow and the optical flow respectively. Third, the authors fuse the features extracted by the two networks to obtain a final prediction result. To testify the performance of the proposed model, four different datasets (two public datasets and two self-built datasets) are selected in this paper. The experimental results show that our model has good generalization ability compared to state-of-the-art methods, since it not only has good ability on large-scale datasets, but also performs well on small-scale datasets.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90677909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MapReduce-Based Crow Search-Adopted Partitional Clustering Algorithms for Handling Large-Scale Data 基于mapreduce的乌鸦搜索-采用分区聚类算法处理大规模数据
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/IJCINI.20211001.OA32
N. Visalakshi, S. Shanthi, K. Lakshmi
{"title":"MapReduce-Based Crow Search-Adopted Partitional Clustering Algorithms for Handling Large-Scale Data","authors":"N. Visalakshi, S. Shanthi, K. Lakshmi","doi":"10.4018/IJCINI.20211001.OA32","DOIUrl":"https://doi.org/10.4018/IJCINI.20211001.OA32","url":null,"abstract":"","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74551018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Multi-Objective Differential Evolutionary Optimization Method for Performance Optimization of Cloud Application 云应用性能优化的多目标差分进化优化方法
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.295808
Xin Du, Youcong Ni, Peng Ye, Ruliang Xiao
Due to the limited search space in the existing performance optimization ap-proaches at software architectures of cloud applications (SAoCA) level, it is difficult for these methods to obtain the cloud resource usage scheme with optimal cost-performance ratio. Aiming at this problem, this paper firstly de-fines a performance optimization model called CAPOM that can enlarge the search space effectively. Secondly, an efficient differential evolutionary op-timization algorithm named MODE4CA is proposed to solve the CAPOM model by defining evolutionary operators with strategy pool and repair mechanism. Further, a method for optimizing performance at SAoCA level, called POM4CA is derived. Finally, two problem instances with different sizes are taken to conduct the experiments for comparing POM4CA with the current representative method under the light and heavy workload. The ex-perimental results show that POM4CA method can obtain better response time and spend less cost of cloud resources.
现有的云应用软件架构(SAoCA)级性能优化方法由于搜索空间有限,难以获得性价比最优的云资源使用方案。针对这一问题,本文首先定义了一种能够有效扩大搜索空间的性能优化模型CAPOM。其次,通过定义具有策略池和修复机制的进化算子,提出了一种高效的差分进化优化算法MODE4CA来求解CAPOM模型;此外,还导出了一种在SAoCA级别上优化性能的方法,称为POM4CA。最后,选取两个不同规模的问题实例进行实验,将POM4CA与当前代表性方法在轻负荷和重负荷下进行比较。实验结果表明,POM4CA方法可以获得更好的响应时间和更少的云资源成本。
{"title":"A Multi-Objective Differential Evolutionary Optimization Method for Performance Optimization of Cloud Application","authors":"Xin Du, Youcong Ni, Peng Ye, Ruliang Xiao","doi":"10.4018/ijcini.295808","DOIUrl":"https://doi.org/10.4018/ijcini.295808","url":null,"abstract":"Due to the limited search space in the existing performance optimization ap-proaches at software architectures of cloud applications (SAoCA) level, it is difficult for these methods to obtain the cloud resource usage scheme with optimal cost-performance ratio. Aiming at this problem, this paper firstly de-fines a performance optimization model called CAPOM that can enlarge the search space effectively. Secondly, an efficient differential evolutionary op-timization algorithm named MODE4CA is proposed to solve the CAPOM model by defining evolutionary operators with strategy pool and repair mechanism. Further, a method for optimizing performance at SAoCA level, called POM4CA is derived. Finally, two problem instances with different sizes are taken to conduct the experiments for comparing POM4CA with the current representative method under the light and heavy workload. The ex-perimental results show that POM4CA method can obtain better response time and spend less cost of cloud resources.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84966503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eye Movement Feature Set and Predictive Model for Dyslexia: Feature Set and Predictive Model for Dyslexia 阅读障碍的眼动特征集和预测模型:阅读障碍的特征集和预测模型
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/IJCINI.20211001.OA28
Jothi Prabha Appadurai, R. Bhargavi
Dyslexia is a learning disorder that can cause difficulties in reading or writing. Dyslexia is not a visual problem, but many dyslexics have impaired magnocellular system, which causes poor eye control. Eye-trackers are used to track eye movements. This research work proposes a set of significant eye movement features that are used to build a predictive model for dyslexia. Fixation and saccade eye events are detected using the dispersion-threshold and velocity-threshold algorithms. Various machine learning models are experimented. Validation is done on 185 subjects using 10-fold cross-validation. Velocity-based features gave high accuracy compared to statistical and dispersion features. Highest accuracy of 96% was achieved using the hybrid kernel support vector machine-particle swarm optimization model followed by the xtreme gradient boosting model with an accuracy of 95%. The best set of features are the first fixation start time, average fixation saccade duration, the total number of fixations, total number of saccades, and ratio between saccades and fixations.
阅读障碍是一种学习障碍,会导致阅读或写作困难。阅读障碍不是视觉问题,但许多阅读障碍患者的大细胞系统受损,导致眼睛控制能力差。眼球追踪器是用来追踪眼球运动的。这项研究工作提出了一组重要的眼球运动特征,用于建立阅读障碍的预测模型。使用色散阈值和速度阈值算法检测注视和扫视事件。实验了各种机器学习模型。使用10倍交叉验证对185名受试者进行验证。与统计和分散特征相比,基于速度的特征具有更高的准确性。混合核支持向量机-粒子群优化模型的准确率最高,达到96%,其次是极端梯度提升模型,准确率为95%。最佳特征集是第一次注视开始时间、平均注视扫视持续时间、总注视次数、总扫视次数和扫视次数与注视次数之比。
{"title":"Eye Movement Feature Set and Predictive Model for Dyslexia: Feature Set and Predictive Model for Dyslexia","authors":"Jothi Prabha Appadurai, R. Bhargavi","doi":"10.4018/IJCINI.20211001.OA28","DOIUrl":"https://doi.org/10.4018/IJCINI.20211001.OA28","url":null,"abstract":"Dyslexia is a learning disorder that can cause difficulties in reading or writing. Dyslexia is not a visual problem, but many dyslexics have impaired magnocellular system, which causes poor eye control. Eye-trackers are used to track eye movements. This research work proposes a set of significant eye movement features that are used to build a predictive model for dyslexia. Fixation and saccade eye events are detected using the dispersion-threshold and velocity-threshold algorithms. Various machine learning models are experimented. Validation is done on 185 subjects using 10-fold cross-validation. Velocity-based features gave high accuracy compared to statistical and dispersion features. Highest accuracy of 96% was achieved using the hybrid kernel support vector machine-particle swarm optimization model followed by the xtreme gradient boosting model with an accuracy of 95%. The best set of features are the first fixation start time, average fixation saccade duration, the total number of fixations, total number of saccades, and ratio between saccades and fixations.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86085001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Cognitive Support Tools for a Pre-Performance Routine in a Darts Game 认知支持工具在一个飞镖游戏的表演前例行程序
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/IJCINI.20211001.OA45
H. Hiraishi
This paper describes two types of a cognitive support tools for a pre-performance routine (PPR) in a darts game. PPRs entail the performance of determined motions before an action and are often executed in sports for the purpose of removing stress or raising concentration. The concentration-stabilizing phenomenon was discovered by the previous research, and it determined that the phenomenon appears more conspicuous in the case of experts and PPRs. A tool using a simple brainwaves sensor has been designed and shows us the current status of concentration and notifies us of the concentration-stabilizing phenomenon on a tablet computer. Another tool has been developed on a smart watch with a heart rate sensor. The smart watch indicated heartbeat as a “beep” sound to a user. It was designed based on a result that indicated that darts game scores tend to improve by throwing immediately after a heartbeat. The effectiveness of the tools were verified in several experiments.
本文描述了两种类型的认知支持工具,用于飞镖游戏的预表演程序(PPR)。PPRs需要在一个动作之前做出确定的动作,通常在运动中进行,目的是消除压力或提高注意力。先前的研究发现了浓度稳定现象,并确定了专家和ppr的情况下这种现象更为明显。一种使用简单脑电波传感器的工具已经被设计出来,它可以在平板电脑上显示我们当前的注意力状态,并通知我们注意力稳定的现象。另一种工具已经在带有心率传感器的智能手表上开发出来。智能手表以“哔”的声音向用户指示心跳。它是基于一项研究结果设计的,该结果表明,在心跳后立即投掷飞镖游戏分数往往会提高。实验验证了该工具的有效性。
{"title":"Cognitive Support Tools for a Pre-Performance Routine in a Darts Game","authors":"H. Hiraishi","doi":"10.4018/IJCINI.20211001.OA45","DOIUrl":"https://doi.org/10.4018/IJCINI.20211001.OA45","url":null,"abstract":"This paper describes two types of a cognitive support tools for a pre-performance routine (PPR) in a darts game. PPRs entail the performance of determined motions before an action and are often executed in sports for the purpose of removing stress or raising concentration. The concentration-stabilizing phenomenon was discovered by the previous research, and it determined that the phenomenon appears more conspicuous in the case of experts and PPRs. A tool using a simple brainwaves sensor has been designed and shows us the current status of concentration and notifies us of the concentration-stabilizing phenomenon on a tablet computer. Another tool has been developed on a smart watch with a heart rate sensor. The smart watch indicated heartbeat as a “beep” sound to a user. It was designed based on a result that indicated that darts game scores tend to improve by throwing immediately after a heartbeat. The effectiveness of the tools were verified in several experiments.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79624070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Analysis of Traffic Accident Features and Crash Severity Prediction 交通事故特征分析与碰撞严重程度预测
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.20211001.oa1
Sindhu Sumukha, C. GeorgePhilip
Vehicle crashes occur because of numerous factors. It leads to loss of lives and permanent incapacity. The budgetary expenses of both individuals as well as for the nation are influenced by vehicle crashes. According to Road accident statistics, a total of 464910 road accidents were reported in India, claiming 1,47,913 lives and causing injuries to 4,70,975 persons every year. In this work, the UK data set sourced from Kaggle is used. For the study, 17 attributes and 35k records of the year 2015 are considered. The data set is imbalanced, so to balance out the data, the over-sampling technique is used. Random Forest, Decision tree, Logistic Regression, and Gradient Naïve Bayes algorithms are used to predict the severity of Accidents. To evaluate the model, performance measures like Accuracy, Precision, Recall, F1-Score are used. When Accuracy, Precision, F1-Score performance measure is considered Random Forest yielded the best result. When Recall performance measure is used, Random forest for Fatal, Decision Trees for Serious, Logistic regression for Slight yielded the best result.
交通事故的发生有很多原因。它会导致生命损失和永久丧失能力。无论是个人还是国家的预算开支都受到车祸的影响。根据道路交通事故统计数据,印度每年共发生464910起道路交通事故,造成147913人死亡,47975人受伤。在这项工作中,使用了来自Kaggle的英国数据集。在这项研究中,考虑了2015年的17个属性和35000条记录。由于数据集不平衡,为了平衡数据,采用了过采样技术。随机森林,决策树,逻辑回归和梯度Naïve贝叶斯算法用于预测事故的严重程度。为了评估模型,使用了准确性、精度、召回率、F1-Score等性能指标。当精度,精度,F1-Score性能指标被认为是随机森林产生了最好的结果。当使用召回性能度量时,随机森林用于致命,决策树用于严重,逻辑回归用于轻微产生最佳结果。
{"title":"Analysis of Traffic Accident Features and Crash Severity Prediction","authors":"Sindhu Sumukha, C. GeorgePhilip","doi":"10.4018/ijcini.20211001.oa1","DOIUrl":"https://doi.org/10.4018/ijcini.20211001.oa1","url":null,"abstract":"Vehicle crashes occur because of numerous factors. It leads to loss of lives and permanent incapacity. The budgetary expenses of both individuals as well as for the nation are influenced by vehicle crashes. According to Road accident statistics, a total of 464910 road accidents were reported in India, claiming 1,47,913 lives and causing injuries to 4,70,975 persons every year. In this work, the UK data set sourced from Kaggle is used. For the study, 17 attributes and 35k records of the year 2015 are considered. The data set is imbalanced, so to balance out the data, the over-sampling technique is used. Random Forest, Decision tree, Logistic Regression, and Gradient Naïve Bayes algorithms are used to predict the severity of Accidents. To evaluate the model, performance measures like Accuracy, Precision, Recall, F1-Score are used. When Accuracy, Precision, F1-Score performance measure is considered Random Forest yielded the best result. When Recall performance measure is used, Random forest for Fatal, Decision Trees for Serious, Logistic regression for Slight yielded the best result.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80947414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Convolutional Neural Network Integrated With Fuzzy Rules for Decision Making in Brain Tumor Diagnosis 结合模糊规则的卷积神经网络在脑肿瘤诊断中的应用
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.20211001.oa47
Pham Van Hai, Eloanyi Samson Amaechi
Conventional methods used in brain tumors detection, diagnosis, and classification such as magnetic resonance imaging and computed tomography scanning technologies are unbridged in their results. This paper presents a proposed model combination, convolutional neural networks with fuzzy rules in the detection and classification of medical imaging such as healthy brain cell and tumors brain cells. This model contributes fully on the automatic classification and detection medical imaging such as brain tumors, heart diseases, breast cancers, HIV and FLU. The experimental result of the proposed model shows overall accuracy of 97.6%, which indicates that the proposed method achieves improved performance than the other current methods in the literature such as [classification of tumors in human brain MRI using wavelet and support vector machine 94.7%, and deep convolutional neural networks with transfer learning for automated brain image classification 95.0%], uses in the detection, diagnosis, and classification of medical imaging decision supports.
传统的脑肿瘤检测、诊断和分类方法,如磁共振成像和计算机断层扫描技术,在其结果上是没有桥梁的。本文提出了一种基于模糊规则的卷积神经网络对健康脑细胞和肿瘤脑细胞等医学影像进行检测和分类的方法。该模型在脑肿瘤、心脏病、乳腺癌、艾滋病、流感等医学影像的自动分类和检测方面发挥了重要作用。实验结果表明,该模型的总体准确率为97.6%,与文献中现有的[基于小波和支持向量机的人脑MRI肿瘤分类94.7%,基于迁移学习的深度卷积神经网络用于脑图像自动分类95.0%]等方法相比,该方法的性能有所提高。并为医学影像分类决策提供支持。
{"title":"Convolutional Neural Network Integrated With Fuzzy Rules for Decision Making in Brain Tumor Diagnosis","authors":"Pham Van Hai, Eloanyi Samson Amaechi","doi":"10.4018/ijcini.20211001.oa47","DOIUrl":"https://doi.org/10.4018/ijcini.20211001.oa47","url":null,"abstract":"Conventional methods used in brain tumors detection, diagnosis, and classification such as magnetic resonance imaging and computed tomography scanning technologies are unbridged in their results. This paper presents a proposed model combination, convolutional neural networks with fuzzy rules in the detection and classification of medical imaging such as healthy brain cell and tumors brain cells. This model contributes fully on the automatic classification and detection medical imaging such as brain tumors, heart diseases, breast cancers, HIV and FLU. The experimental result of the proposed model shows overall accuracy of 97.6%, which indicates that the proposed method achieves improved performance than the other current methods in the literature such as [classification of tumors in human brain MRI using wavelet and support vector machine 94.7%, and deep convolutional neural networks with transfer learning for automated brain image classification 95.0%], uses in the detection, diagnosis, and classification of medical imaging decision supports.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74900621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Balancing Exploration and Exploitation With Decomposition-Based Dynamic Multi-Objective Evolutionary Algorithm 基于分解的动态多目标进化算法平衡探索与开发
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/IJCINI.20211001.OA25
Qing Zhang, Ruwang Jiao, Sanyou Zeng, Z. Zeng
{"title":"Balancing Exploration and Exploitation With Decomposition-Based Dynamic Multi-Objective Evolutionary Algorithm","authors":"Qing Zhang, Ruwang Jiao, Sanyou Zeng, Z. Zeng","doi":"10.4018/IJCINI.20211001.OA25","DOIUrl":"https://doi.org/10.4018/IJCINI.20211001.OA25","url":null,"abstract":"","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79319035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laplacian Likelihood-Based Generalized Additive Model for RNA-Seq Analysis of Oral Squamous Cell Carcinoma 基于拉普拉斯似然的口腔鳞癌RNA-Seq分析的广义加性模型
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.20211001.oa18
V. Biju, C. Prashanth
The study's objective is to identify the non-linear relationship of differentially expressed genes that vary in terms of the tumour and normal tissue and correct for any variations among the RNA-Seq experiment focused on Oral squamous cell carcinoma samples from patients. A Laplacian Likelihood version of the Generalized Additive Model is proposed and compared with the regular GAM models in terms of the non-linear fitting. The Non-Linear machine learning approach of Laplacian Likelihood-based GAM could complement RNA-Seq Analysis mainly to interpret, validate, and prioritize the patient samples data of differentially expressed genes. The analysis eases the standard parametric presumption and helps discover complexity in the association between the dependent and the independent variable and parameter smoothing that might otherwise be neglected. Concurvity, standard error, deviance, and other statistical verification have been carried out to confirm Laplacian Likelihood-based GAM efficiency.
该研究的目的是确定肿瘤和正常组织中差异表达基因的非线性关系,并纠正来自患者口腔鳞状细胞癌样本的RNA-Seq实验中的任何差异。提出了广义加性模型的拉普拉斯似然版本,并在非线性拟合方面与正则GAM模型进行了比较。基于Laplacian Likelihood-based GAM的非线性机器学习方法可以作为RNA-Seq分析的补充,主要用于对差异表达基因的患者样本数据进行解释、验证和优先排序。该分析简化了标准参数假设,有助于发现因变量和自变量以及参数平滑之间关联的复杂性,否则可能被忽略。通过一致性、标准误差、偏差和其他统计验证来确认基于拉普拉斯似然的GAM效率。
{"title":"Laplacian Likelihood-Based Generalized Additive Model for RNA-Seq Analysis of Oral Squamous Cell Carcinoma","authors":"V. Biju, C. Prashanth","doi":"10.4018/ijcini.20211001.oa18","DOIUrl":"https://doi.org/10.4018/ijcini.20211001.oa18","url":null,"abstract":"The study's objective is to identify the non-linear relationship of differentially expressed genes that vary in terms of the tumour and normal tissue and correct for any variations among the RNA-Seq experiment focused on Oral squamous cell carcinoma samples from patients. A Laplacian Likelihood version of the Generalized Additive Model is proposed and compared with the regular GAM models in terms of the non-linear fitting. The Non-Linear machine learning approach of Laplacian Likelihood-based GAM could complement RNA-Seq Analysis mainly to interpret, validate, and prioritize the patient samples data of differentially expressed genes. The analysis eases the standard parametric presumption and helps discover complexity in the association between the dependent and the independent variable and parameter smoothing that might otherwise be neglected. Concurvity, standard error, deviance, and other statistical verification have been carried out to confirm Laplacian Likelihood-based GAM efficiency.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80480235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptical Slot Microstrip Patch Antenna Design Based on a Dynamic Constrained Multiobjective Optimization Evolutionary Algorithm 基于动态约束多目标优化进化算法的椭圆槽微带贴片天线设计
IF 0.9 Q4 Computer Science Pub Date : 2021-10-01 DOI: 10.4018/ijcini.20211001.oa30
Rangzhong Wu, Caie Hu, Z. Zeng, Sanyou Zeng, Jawdat S. Alkasassbeh
Most evolutionary optimization algorithms have already been used for antenna design and shown promising results on improving the performance of the antenna. However, for many real-world antenna optimization problems, they are difficult to solve in that there are highly constrained and multimodal difficulty. These difficulties impede the development of antenna design. In this paper, an elliptical slot microstrip patch antenna design with these difficulties is modeled as a constrained optimization problem (COP). To address the problem, a Dynamic Constrained Multiobjective Optimization Evolutionary Algorithm(DCMOEA) is used. The experimental results show that the optimum antenna with satisfying the design requirement is obtained, and as well as we find the radiation patch should be a whole ellipse instead of subtracting with two ellipses.
大多数进化优化算法已经用于天线设计,并在提高天线性能方面显示出良好的效果。然而,对于现实世界中的许多天线优化问题,由于具有高度约束和多模态的难度而难以解决。这些困难阻碍了天线设计的发展。本文将存在这些困难的椭圆槽微带贴片天线设计建模为约束优化问题。为了解决这一问题,采用了动态约束多目标优化进化算法(DCMOEA)。实验结果表明,得到了满足设计要求的最优天线,并且发现辐射贴片应该是一个完整的椭圆,而不是两个椭圆相减。
{"title":"Elliptical Slot Microstrip Patch Antenna Design Based on a Dynamic Constrained Multiobjective Optimization Evolutionary Algorithm","authors":"Rangzhong Wu, Caie Hu, Z. Zeng, Sanyou Zeng, Jawdat S. Alkasassbeh","doi":"10.4018/ijcini.20211001.oa30","DOIUrl":"https://doi.org/10.4018/ijcini.20211001.oa30","url":null,"abstract":"Most evolutionary optimization algorithms have already been used for antenna design and shown promising results on improving the performance of the antenna. However, for many real-world antenna optimization problems, they are difficult to solve in that there are highly constrained and multimodal difficulty. These difficulties impede the development of antenna design. In this paper, an elliptical slot microstrip patch antenna design with these difficulties is modeled as a constrained optimization problem (COP). To address the problem, a Dynamic Constrained Multiobjective Optimization Evolutionary Algorithm(DCMOEA) is used. The experimental results show that the optimum antenna with satisfying the design requirement is obtained, and as well as we find the radiation patch should be a whole ellipse instead of subtracting with two ellipses.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86350324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Cognitive Informatics and Natural Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1