Since computing semantic similarity tends to simulate the thinking process of humans, semantic dissimilarity must play a part in this process. In this paper, we present a new approach for semantic similarity measuring by taking consideration of dissimilarity into the process of computation. Specifically, the proposed measures explore the potential antonymy in the hierarchical structure of WordNet to represent the dissimilarity between concepts and then combine the dissimilarity with the results of existing methods to achieve semantic similarity results. The relation between parameters and the correlation value is discussed in detail. The proposed model is then applied to different text granularity levels to validate the correctness on similarity measurement. Experimental results show that the proposed approach not only achieves high correlation value against human ratings but also has effective improvement to existing path-distance based methods on the word similarity level, in the meanwhile effectively correct existing sentence similarity method in some cases in Microsoft Research Paraphrase Corpus and SemEval-2014 date set.
{"title":"Intelligent recognition of semantic relationships based on antonymy","authors":"Hui Guan, Chengzhen Jia, Hongji Yang","doi":"10.3233/mgs-200332","DOIUrl":"https://doi.org/10.3233/mgs-200332","url":null,"abstract":"Since computing semantic similarity tends to simulate the thinking process of humans, semantic dissimilarity must play a part in this process. In this paper, we present a new approach for semantic similarity measuring by taking consideration of dissimilarity into the process of computation. Specifically, the proposed measures explore the potential antonymy in the hierarchical structure of WordNet to represent the dissimilarity between concepts and then combine the dissimilarity with the results of existing methods to achieve semantic similarity results. The relation between parameters and the correlation value is discussed in detail. The proposed model is then applied to different text granularity levels to validate the correctness on similarity measurement. Experimental results show that the proposed approach not only achieves high correlation value against human ratings but also has effective improvement to existing path-distance based methods on the word similarity level, in the meanwhile effectively correct existing sentence similarity method in some cases in Microsoft Research Paraphrase Corpus and SemEval-2014 date set.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80200632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahid Karim, Ye Zhang, Shoulin Yin, Irfana Bibi, Ali Anwar Brohi
Traditional object detection algorithms and strategies are difficult to meet the requirements of data processing efficiency, performance, speed and intelligence in object detection. Through the study and imitation of the cognitive ability of the brain, deep learning can analyze and process the data features. It has a strong ability of visualization and becomes the mainstream algorithm of current object detection applications. Firstly, we have discussed the developments of traditional object detection methods. Secondly, the frameworks of object detection (e.g. Region-based CNN (R-CNN), Spatial Pyramid Pooling Network (SPP-NET), Fast-RCNN and Faster-RCNN) which combine region proposals and convolutional neural networks (CNNs) are briefly characterized for optical remote sensing applications. You only look once (YOLO) algorithm is the representative of the object detection frameworks (e.g. YOLO and Single Shot MultiBox Detector (SSD)) which transforms the object detection into a regression problem. The limitations of remote sensing images and object detectors have been highlighted and discussed. The feasibility and limitations of these approaches will lead researchers to prudently select appropriate image enhancements. Finally, the problems of object detection algorithms in deep learning are summarized and the future recommendations are also conferred.
{"title":"A brief review and challenges of object detection in optical remote sensing imagery","authors":"Shahid Karim, Ye Zhang, Shoulin Yin, Irfana Bibi, Ali Anwar Brohi","doi":"10.3233/mgs-200330","DOIUrl":"https://doi.org/10.3233/mgs-200330","url":null,"abstract":"Traditional object detection algorithms and strategies are difficult to meet the requirements of data processing efficiency, performance, speed and intelligence in object detection. Through the study and imitation of the cognitive ability of the brain, deep learning can analyze and process the data features. It has a strong ability of visualization and becomes the mainstream algorithm of current object detection applications. Firstly, we have discussed the developments of traditional object detection methods. Secondly, the frameworks of object detection (e.g. Region-based CNN (R-CNN), Spatial Pyramid Pooling Network (SPP-NET), Fast-RCNN and Faster-RCNN) which combine region proposals and convolutional neural networks (CNNs) are briefly characterized for optical remote sensing applications. You only look once (YOLO) algorithm is the representative of the object detection frameworks (e.g. YOLO and Single Shot MultiBox Detector (SSD)) which transforms the object detection into a regression problem. The limitations of remote sensing images and object detectors have been highlighted and discussed. The feasibility and limitations of these approaches will lead researchers to prudently select appropriate image enhancements. Finally, the problems of object detection algorithms in deep learning are summarized and the future recommendations are also conferred.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91315295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Connecting objects have increasingly become popular in recent years, leading to the connection of more than 50 billion objects by the end of 2020. This large number of objects will generate a huge amount of data that is currently being processed and stored in the cloud. Fog Computing presents a promising solution to the problems of high latency and huge network traffic encountered in the cloud. As Fog’s infrastructures are dense, heterogeneous and geo-distributed, managing the data in order to satisfy users demand in such context is very complicated. In this work, we propose a data management strategy called ‘RMS-HaFC’ in which we consider the characteristics of Fog Computing environment. To do so, we proposed a hierarchical multi-layer model, on which we designed a migration and replication strategy based on data popularity. These strategies duplicate files dynamically and store them in different locations to improve the response time of users requests and minimize the system energy consumption without loading network usage. The strategy was evaluated using the iFogSim simulator and the experimental results obtained are very promising.
{"title":"A replication and migration strategy on the hierarchical architecture in the fog computing environment","authors":"Ahmed Berkennou, Ghalem Belalem, Said Limam","doi":"10.3233/mgs-200333","DOIUrl":"https://doi.org/10.3233/mgs-200333","url":null,"abstract":"Connecting objects have increasingly become popular in recent years, leading to the connection of more than 50 billion objects by the end of 2020. This large number of objects will generate a huge amount of data that is currently being processed and stored in the cloud. Fog Computing presents a promising solution to the problems of high latency and huge network traffic encountered in the cloud. As Fog’s infrastructures are dense, heterogeneous and geo-distributed, managing the data in order to satisfy users demand in such context is very complicated. In this work, we propose a data management strategy called ‘RMS-HaFC’ in which we consider the characteristics of Fog Computing environment. To do so, we proposed a hierarchical multi-layer model, on which we designed a migration and replication strategy based on data popularity. These strategies duplicate files dynamically and store them in different locations to improve the response time of users requests and minimize the system energy consumption without loading network usage. The strategy was evaluated using the iFogSim simulator and the experimental results obtained are very promising.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81397973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new agent based load balancing model for improving the grid performance","authors":"Ali Wided, O. Kazar","doi":"10.3233/MGS-200326","DOIUrl":"https://doi.org/10.3233/MGS-200326","url":null,"abstract":"","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91258435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jihed Elouni, Hamdi Ellouzi, Hela Ltifi, Mounir Ben Ayed
{"title":"Intelligent health monitoring system modeling based on machine learning and agent technology","authors":"Jihed Elouni, Hamdi Ellouzi, Hela Ltifi, Mounir Ben Ayed","doi":"10.3233/MGS-200329","DOIUrl":"https://doi.org/10.3233/MGS-200329","url":null,"abstract":"","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73062223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Context-aware multi-agent planning in intelligent environments","authors":"Houda Haiouni, R. Maamri","doi":"10.3233/mgs-190310","DOIUrl":"https://doi.org/10.3233/mgs-190310","url":null,"abstract":"","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90298188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the drawbacks of glowworm swarm optimisation (GSO) is its premature convergence, which leaves it often ineffective for solving complex practical problems. This paper proposes a new hybrid metaheuristic algorithm, that is, moth-flame glowworm swarm optimisation (MFGSO). The main idea of the hybrid algorithm is to combine the exploration ability in moth-flame optimisation (MFO) with the exploitation ability in GSO. Performance evaluations are conducted on benchmarking test functions in comparison with the basic GSO and other metaheuristic algorithms. The results show that MFGSO outperforms the basic GSO and other metaheuristic algorithms on most test functions in terms of local optima avoidance and convergence speed.
{"title":"Moth-flame glowworm swarm optimisation","authors":"D. Alboaneen, H. Tianfield, Yan Zhang","doi":"10.3233/mgs-190314","DOIUrl":"https://doi.org/10.3233/mgs-190314","url":null,"abstract":"One of the drawbacks of glowworm swarm optimisation (GSO) is its premature convergence, which leaves it often ineffective for solving complex practical problems. This paper proposes a new hybrid metaheuristic algorithm, that is, moth-flame glowworm swarm optimisation (MFGSO). The main idea of the hybrid algorithm is to combine the exploration ability in moth-flame optimisation (MFO) with the exploitation ability in GSO. Performance evaluations are conducted on benchmarking test functions in comparison with the basic GSO and other metaheuristic algorithms. The results show that MFGSO outperforms the basic GSO and other metaheuristic algorithms on most test functions in terms of local optima avoidance and convergence speed.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74192071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}