Abstract When the interest is in studying conditional dependencies, and more precisely the strength of conditional dependencies, some kind of averaging over the conditioning random vector may be needed. Examples of average measures that can serve in this context are the average conditional Kendall’s tau and partial Kendall’s tau. It is known that these measures differ in general. Some statistical tests are based on these average measures, and a better knowledge of them is of importance. The aim of this paper is to provide a quantitative study of the possible differences of these two average measures, and to establish su˚cient conditions under which they coincide. Both measures are studied in two fairly general settings. In each setting theoretical results are established as well as several illustrative examples given.
{"title":"Study of partial and average conditional Kendall’s tau","authors":"I. Gijbels, Margot Matterne","doi":"10.1515/demo-2021-0104","DOIUrl":"https://doi.org/10.1515/demo-2021-0104","url":null,"abstract":"Abstract When the interest is in studying conditional dependencies, and more precisely the strength of conditional dependencies, some kind of averaging over the conditioning random vector may be needed. Examples of average measures that can serve in this context are the average conditional Kendall’s tau and partial Kendall’s tau. It is known that these measures differ in general. Some statistical tests are based on these average measures, and a better knowledge of them is of importance. The aim of this paper is to provide a quantitative study of the possible differences of these two average measures, and to establish su˚cient conditions under which they coincide. Both measures are studied in two fairly general settings. In each setting theoretical results are established as well as several illustrative examples given.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"82 - 120"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2021-0104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41426060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We characterize the cumulative distribution functions and copulas of two-dimensional self-similar Ito processes, with randomly correlated Wiener margins, as solutions of certain elliptic partial differential equations.
{"title":"On copulas of self-similar Ito processes","authors":"P. Jaworski, Marcin Krzywda","doi":"10.1515/demo-2021-0112","DOIUrl":"https://doi.org/10.1515/demo-2021-0112","url":null,"abstract":"Abstract We characterize the cumulative distribution functions and copulas of two-dimensional self-similar Ito processes, with randomly correlated Wiener margins, as solutions of certain elliptic partial differential equations.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"243 - 266"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45863584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.
{"title":"Asymptotic normality of the relative error regression function estimator for censored and time series data","authors":"Feriel Bouhadjera, E. O. Saïd","doi":"10.1515/demo-2021-0107","DOIUrl":"https://doi.org/10.1515/demo-2021-0107","url":null,"abstract":"Abstract Consider a survival time study, where a sequence of possibly censored failure times is observed with d-dimensional covariate The main goal of this article is to establish the asymptotic normality of the kernel estimator of the relative error regression function when the data exhibit some kind of dependency. The asymptotic variance is explicitly given. Some simulations are drawn to lend further support to our theoretical result and illustrate the good accuracy of the studied method. Furthermore, a real data example is treated to show the good quality of the prediction and that the true data are well inside in the confidence intervals.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"156 - 178"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47944476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The central idea of the paper is to present a general simple patchwork construction principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given marginal distributions. This is of particular interest for the construction of Internal Models in the insurance industry under Solvency II in the European Union. Besides this, the Delegated Regulation by the European Commission requires all insurance companies under supervision to consider different risk scenarios in their risk management system for the company’s own risk assessment. Since it is unreasonable to assume that the potential worst case scenario will materialize in the company, we think that a modelling of various unfavourable scenarios as described in this paper is likewise appropriate. Our explicit copula approach can be considered as a special case of ordinal sums, which in two dimensions even leads to the technically worst VaR scenario.
{"title":"Generating unfavourable VaR scenarios under Solvency II with patchwork copulas","authors":"Dietmar Pfeifer, O. Ragulina","doi":"10.1515/demo-2021-0115","DOIUrl":"https://doi.org/10.1515/demo-2021-0115","url":null,"abstract":"Abstract The central idea of the paper is to present a general simple patchwork construction principle for multivariate copulas that create unfavourable VaR (i.e. Value at Risk) scenarios while maintaining given marginal distributions. This is of particular interest for the construction of Internal Models in the insurance industry under Solvency II in the European Union. Besides this, the Delegated Regulation by the European Commission requires all insurance companies under supervision to consider different risk scenarios in their risk management system for the company’s own risk assessment. Since it is unreasonable to assume that the potential worst case scenario will materialize in the company, we think that a modelling of various unfavourable scenarios as described in this paper is likewise appropriate. Our explicit copula approach can be considered as a special case of ordinal sums, which in two dimensions even leads to the technically worst VaR scenario.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"327 - 346"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43467821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract As a motivating problem, we aim to study some special aspects of the marginal distributions of the order statistics for exchangeable and (more generally) for minimally stable non-negative random variables T1, ..., Tr. In any case, we assume that T1, ..., Tr are identically distributed, with a common survival function ̄G and their survival copula is denoted by K. The diagonal sections of K, along with ̄G, are possible tools to describe the information needed to recover the laws of order statistics. When attention is restricted to the absolutely continuous case, such a joint distribution can be described in terms of the associated multivariate conditional hazard rate (m.c.h.r.) functions. We then study the distributions of the order statistics of T1, ..., Tr also in terms of the system of the m.c.h.r. functions. We compare and, in a sense, we combine the two different approaches in order to obtain different detailed formulas and to analyze some probabilistic aspects for the distributions of interest. This study also leads us to compare the two cases of exchangeable and minimally stable variables both in terms of copulas and of m.c.h.r. functions. The paper concludes with the analysis of two remarkable special cases of stochastic dependence, namely Archimedean copulas and load sharing models. This analysis will allow us to provide some illustrative examples, and some discussion about peculiar aspects of our results.
{"title":"Diagonal sections of copulas, multivariate conditional hazard rates and distributions of order statistics for minimally stable lifetimes","authors":"Rachele Foschi, G. Nappo, F. Spizzichino","doi":"10.1515/demo-2021-0119","DOIUrl":"https://doi.org/10.1515/demo-2021-0119","url":null,"abstract":"Abstract As a motivating problem, we aim to study some special aspects of the marginal distributions of the order statistics for exchangeable and (more generally) for minimally stable non-negative random variables T1, ..., Tr. In any case, we assume that T1, ..., Tr are identically distributed, with a common survival function ̄G and their survival copula is denoted by K. The diagonal sections of K, along with ̄G, are possible tools to describe the information needed to recover the laws of order statistics. When attention is restricted to the absolutely continuous case, such a joint distribution can be described in terms of the associated multivariate conditional hazard rate (m.c.h.r.) functions. We then study the distributions of the order statistics of T1, ..., Tr also in terms of the system of the m.c.h.r. functions. We compare and, in a sense, we combine the two different approaches in order to obtain different detailed formulas and to analyze some probabilistic aspects for the distributions of interest. This study also leads us to compare the two cases of exchangeable and minimally stable variables both in terms of copulas and of m.c.h.r. functions. The paper concludes with the analysis of two remarkable special cases of stochastic dependence, namely Archimedean copulas and load sharing models. This analysis will allow us to provide some illustrative examples, and some discussion about peculiar aspects of our results.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"394 - 423"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43934293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Given a d-dimensional random vector X = (X1, . . ., Xd), if the standard uniform vector U obtained by the component-wise probability integral transform (PIT) of X has the same distribution of its point reflection through the center of the unit hypercube, then X is said to have copula radial symmetry. We generalize to higher dimensions the bivariate test introduced in [11], using three different possibilities for estimating copula derivatives under the null. In a comprehensive simulation study, we assess the finite-sample properties of the resulting tests, comparing them with the finite-sample performance of the multivariate competitors introduced in [17] and [1].
{"title":"Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case","authors":"Monica Billio, L. Frattarolo, D. Guégan","doi":"10.1515/demo-2021-0102","DOIUrl":"https://doi.org/10.1515/demo-2021-0102","url":null,"abstract":"Abstract Given a d-dimensional random vector X = (X1, . . ., Xd), if the standard uniform vector U obtained by the component-wise probability integral transform (PIT) of X has the same distribution of its point reflection through the center of the unit hypercube, then X is said to have copula radial symmetry. We generalize to higher dimensions the bivariate test introduced in [11], using three different possibilities for estimating copula derivatives under the null. In a comprehensive simulation study, we assess the finite-sample properties of the resulting tests, comparing them with the finite-sample performance of the multivariate competitors introduced in [17] and [1].","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"43 - 61"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2021-0102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43389784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Triggered by a recent article establishing the surprising result that within the class of bivariate Archimedean copulas 𝒞ar different notions of convergence - standard uniform convergence, convergence with respect to the metric D1, and so-called weak conditional convergence - coincide, in the current contribution we tackle the natural question, whether the obtained equivalence also holds in the larger class of associative copulas 𝒞a. Building upon the fact that each associative copula can be expressed as (finite or countably infinite) ordinal sum of Archimedean copulas and the minimum copula M we show that standard uniform convergence and convergence with respect to D1 are indeed equivalent in 𝒞a. It remains an open question whether the equivalence also extends to weak conditional convergence. As by-products of some preliminary steps needed for the proof of the main result we answer two conjectures going back to Durante et al. and show that, in the language of Baire categories, when working with D1 a typical associative copula is Archimedean and a typical Archimedean copula is strict.
{"title":"On convergence of associative copulas and related results","authors":"Thimo M. Kasper, S. Fuchs, W. Trutschnig","doi":"10.1515/demo-2021-0114","DOIUrl":"https://doi.org/10.1515/demo-2021-0114","url":null,"abstract":"Abstract Triggered by a recent article establishing the surprising result that within the class of bivariate Archimedean copulas 𝒞ar different notions of convergence - standard uniform convergence, convergence with respect to the metric D1, and so-called weak conditional convergence - coincide, in the current contribution we tackle the natural question, whether the obtained equivalence also holds in the larger class of associative copulas 𝒞a. Building upon the fact that each associative copula can be expressed as (finite or countably infinite) ordinal sum of Archimedean copulas and the minimum copula M we show that standard uniform convergence and convergence with respect to D1 are indeed equivalent in 𝒞a. It remains an open question whether the equivalence also extends to weak conditional convergence. As by-products of some preliminary steps needed for the proof of the main result we answer two conjectures going back to Durante et al. and show that, in the language of Baire categories, when working with D1 a typical associative copula is Archimedean and a typical Archimedean copula is strict.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"307 - 326"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44069108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The paper investigates the Hoeffding–Sobol decomposition of homogeneous co-survival functions. For this class, the Choquet representation is transferred to the terms of the functional decomposition, and in addition to their individual variances, or to the superset combinations of those. The domain of integration in the resulting formulae is reduced in comparison with the already known expressions. When the function under study is the stable tail dependence function of a random vector, ranking these superset indices corresponds to clustering the components of the random vector with respect to their asymptotic dependence. Their Choquet representation is the main ingredient in deriving a sharp upper bound for the quantities involved in the tail dependograph, a graph in extreme value theory that summarizes asymptotic dependence.
{"title":"Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application","authors":"Cécile Mercadier, P. Ressel","doi":"10.1515/demo-2021-0108","DOIUrl":"https://doi.org/10.1515/demo-2021-0108","url":null,"abstract":"Abstract The paper investigates the Hoeffding–Sobol decomposition of homogeneous co-survival functions. For this class, the Choquet representation is transferred to the terms of the functional decomposition, and in addition to their individual variances, or to the superset combinations of those. The domain of integration in the resulting formulae is reduced in comparison with the already known expressions. When the function under study is the stable tail dependence function of a random vector, ranking these superset indices corresponds to clustering the components of the random vector with respect to their asymptotic dependence. Their Choquet representation is the main ingredient in deriving a sharp upper bound for the quantities involved in the tail dependograph, a graph in extreme value theory that summarizes asymptotic dependence.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"179 - 198"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42247709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this paper the goal is to explain predictions from complex machine learning models. One method that has become very popular during the last few years is Shapley values. The original development of Shapley values for prediction explanation relied on the assumption that the features being described were independent. If the features in reality are dependent this may lead to incorrect explanations. Hence, there have recently been attempts of appropriately modelling/estimating the dependence between the features. Although the previously proposed methods clearly outperform the traditional approach assuming independence, they have their weaknesses. In this paper we propose two new approaches for modelling the dependence between the features. Both approaches are based on vine copulas, which are flexible tools for modelling multivariate non-Gaussian distributions able to characterise a wide range of complex dependencies. The performance of the proposed methods is evaluated on simulated data sets and a real data set. The experiments demonstrate that the vine copula approaches give more accurate approximations to the true Shapley values than their competitors.
{"title":"Explaining predictive models using Shapley values and non-parametric vine copulas","authors":"K. Aas, T. Nagler, Martin Jullum, A. Løland","doi":"10.1515/demo-2021-0103","DOIUrl":"https://doi.org/10.1515/demo-2021-0103","url":null,"abstract":"Abstract In this paper the goal is to explain predictions from complex machine learning models. One method that has become very popular during the last few years is Shapley values. The original development of Shapley values for prediction explanation relied on the assumption that the features being described were independent. If the features in reality are dependent this may lead to incorrect explanations. Hence, there have recently been attempts of appropriately modelling/estimating the dependence between the features. Although the previously proposed methods clearly outperform the traditional approach assuming independence, they have their weaknesses. In this paper we propose two new approaches for modelling the dependence between the features. Both approaches are based on vine copulas, which are flexible tools for modelling multivariate non-Gaussian distributions able to characterise a wide range of complex dependencies. The performance of the proposed methods is evaluated on simulated data sets and a real data set. The experiments demonstrate that the vine copula approaches give more accurate approximations to the true Shapley values than their competitors.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"9 1","pages":"62 - 81"},"PeriodicalIF":0.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2021-0103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49658964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}