The current COVID-19 pandemic is affecting different countries in different ways. The assortment of reporting techniques alongside other issues, such as underreporting and budgetary constraints, makes predicting the spread and lethality of the virus a challenging task. This work attempts to gain a better understanding of how COVID-19 will affect one of the least studied countries, namely Brazil. Currently, several Brazilian states are in a state of lock-down. However, there is political pressure for this type of measures to be lifted. This work considers the impact that such a termination would have on how the virus evolves locally. This was done by extending the SEIR model with an on / off strategy. Given the simplicity of SEIR we also attempted to gain more insight by developing a neural regressor. We chose to employ features that current clinical studies have pinpointed has having a connection to the lethality of COVID-19. We discuss how this data can be processed in order to obtain a robust assessment.
Supplementary information: The online version contains supplementary material available at 10.1186/s13362-020-00098-w.
In epidemiology, the effective reproduction number is used to characterize the growth rate of an epidemic outbreak. If , the epidemic worsens, and if , then it subsides and eventually dies out. In this paper, we investigate properties of for a modified SEIR model of COVID-19 in the city of Houston, TX USA, in which the population is divided into low-risk and high-risk subpopulations. The response of to two types of control measures (testing and distancing) applied to the two different subpopulations is characterized. A nonlinear cost model is used for control measures, to include the effects of diminishing returns. Lowest-cost control combinations for reducing instantaneous to a given value are computed. We propose three types of heuristic strategies for mitigating COVID-19 that are targeted at reducing , and we exhibit the tradeoffs between strategy implementation costs and number of deaths. We also consider two variants of each type of strategy: basic strategies, which consider only the effects of controls on , without regard to subpopulation; and high-risk prioritizing strategies, which maximize control of the high-risk subpopulation. Results showed that of the three heuristic strategy types, the most cost-effective involved setting a target value for and applying sufficient controls to attain that target value. This heuristic led to strategies that begin with strict distancing of the entire population, later followed by increased testing. Strategies that maximize control on high-risk individuals were less cost-effective than basic strategies that emphasize reduction of the rate of spreading of the disease. The model shows that delaying the start of control measures past a certain point greatly worsens strategy outcomes. We conclude that the effective reproduction can be a valuable real-time indicator in determining cost-effective control strategies.
The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suggests a novel type of disease spread dynamics. We here study the case where infected agents recover and only develop immunity if they are continuously infected for some time τ. For large τ, the disease model is described by a statistical field theory. Hence, the phases of the underlying field theory characterise the disease dynamics: (i) a pandemic phase and (ii) a response regime. The statistical field theory provides an upper bound of the peak rate of infected agents. An effective control strategy needs to aim to keep the disease in the response regime (no 'second' wave). The model is tested at the quantitative level using an idealised disease network. The model excellently describes the epidemic spread of the SARS-CoV-2 outbreak in the city of Wuhan, China. We find that only 30% of the recovered agents have developed immunity.