Minghui Cai, Tao Yang, Hongwei Li, Haixia Yang, Jia Han
Space radiation has been well-known as the main health hazard to crews involved in manned space explorations. Two kinds of hydrogenous-rich composites are developed through compressing molding under high-temperature processing techniques for shielding space radiation. Beams of 80~400 MeV/n 12C of the Heavy Ion Research Facility in Lanzhou are used to test the shielding properties of the new composites. Experimental results show that the composite with more hydrogen content has higher shielding ability for 80 and 400 MeV/n 12C particles. Meanwhile, the addition of boron has no obvious effect on improving the shielding performance of the composite. Monte Carlo radiation transport codes were used to assess the shielding performance of composite in real space radiation. The simulation results show that hydrogenous-rich composite has significant advantage in space radiation shielding compared with traditional aluminum.
{"title":"Experimental and Simulation Study on Shielding Performance of Developed Hydrogenous Composites","authors":"Minghui Cai, Tao Yang, Hongwei Li, Haixia Yang, Jia Han","doi":"10.34133/2022/9754387","DOIUrl":"https://doi.org/10.34133/2022/9754387","url":null,"abstract":"Space radiation has been well-known as the main health hazard to crews involved in manned space explorations. Two kinds of hydrogenous-rich composites are developed through compressing molding under high-temperature processing techniques for shielding space radiation. Beams of 80~400 MeV/n 12C of the Heavy Ion Research Facility in Lanzhou are used to test the shielding properties of the new composites. Experimental results show that the composite with more hydrogen content has higher shielding ability for 80 and 400 MeV/n 12C particles. Meanwhile, the addition of boron has no obvious effect on improving the shielding performance of the composite. Monte Carlo radiation transport codes were used to assess the shielding performance of composite in real space radiation. The simulation results show that hydrogenous-rich composite has significant advantage in space radiation shielding compared with traditional aluminum.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"59 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81812608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihong Jiang, Xiaolei Cao, Xiao-Xi Huang, Hui Li, M. Ceccarelli
Since space intelligent robots are not restricted by physiological conditions, it is an attractive choice for the development of automation technology to use them for space exploration and utilization. It is currently the key development direction of the major space powers over the world. This paper first investigates the robotic manipulators and humanoid robot systems for space station applications and reviews theories and methods for robots to achieve large-range stable motion and intelligent dexterous manipulation. Then, the intelligent robot systems for on-orbit satellite maintenance are reviewed, and the related technologies of multirobot collaboration are analyzed. Finally, we investigate the intelligent robot systems for on-orbit assembly of large-scale spatial structures and summarize the technologies of modular assembly and on-orbit manufacture. Overall, this paper reviews the technological progress and development trends of space robots, which provides a good reference for further technical research in this field.
{"title":"Progress and Development Trend of Space Intelligent Robot Technology","authors":"Zhihong Jiang, Xiaolei Cao, Xiao-Xi Huang, Hui Li, M. Ceccarelli","doi":"10.34133/2022/9832053","DOIUrl":"https://doi.org/10.34133/2022/9832053","url":null,"abstract":"Since space intelligent robots are not restricted by physiological conditions, it is an attractive choice for the development of automation technology to use them for space exploration and utilization. It is currently the key development direction of the major space powers over the world. This paper first investigates the robotic manipulators and humanoid robot systems for space station applications and reviews theories and methods for robots to achieve large-range stable motion and intelligent dexterous manipulation. Then, the intelligent robot systems for on-orbit satellite maintenance are reviewed, and the related technologies of multirobot collaboration are analyzed. Finally, we investigate the intelligent robot systems for on-orbit assembly of large-scale spatial structures and summarize the technologies of modular assembly and on-orbit manufacture. Overall, this paper reviews the technological progress and development trends of space robots, which provides a good reference for further technical research in this field.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"31 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77117811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenbo Miao, Qi Li, Junhong Li, J. Zhou, Xiaoli Cheng
{"title":"Corrigendum to “Thermal Environment and Aeroheating Mechanism of Protuberances on Mars Entry Capsule”","authors":"Wenbo Miao, Qi Li, Junhong Li, J. Zhou, Xiaoli Cheng","doi":"10.34133/2022/9790353","DOIUrl":"https://doi.org/10.34133/2022/9790353","url":null,"abstract":"","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"13 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84509031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeyuan Sun, Hong Yang, Que Dong, Yang Mo, Hui Li, Zhihong Jiang
Using space stations for a large number of observation, exploration, and research is a necessary way to fully develop space technology. It is a necessary means of space experiment to install the extravehicular experimental load by using the load plate. However, the extravehicular environment is full of danger, which poses a threat to the health and even safety of astronauts. Using robots to replace astronauts to complete this task can effectively reduce the threat to astronauts. Aiming at the problem that the configurations of existing space robots have difficulty in balancing the contradiction between complexity and dexterity, our previous work proposes a 12-DOF 3-arm robot and preliminarily explores the feasibility of its large-scale ability. This paper focus on the 8-DOF redundant dexterous manipulator composed of 2 of the robot arms. In view of the difficulties in solving the inverse kinematics of the redundant manipulator, the challenges of complex environmental lighting, and difficulties of matching multiple groups of holes and pins in the load plate assembly task, the research on the autonomous assembly of the load plate is carried out. The main work is as follows: (a) A variable D-H parameter inverse kinematics solution method is proposed, which lays a foundation for humanoid dexterous operation planning of the robot. (b) An autonomous operation method based on visual guidance and variable parameter admittance control is proposed. Finally, the safety and robustness of the robot in the autonomous assembly of the load plate with multipins and holes are successfully verified by experiments.
{"title":"Autonomous Assembly Method of 3-Arm Robot to Fix the Multipin and Hole Load Plate on a Space Station","authors":"Zeyuan Sun, Hong Yang, Que Dong, Yang Mo, Hui Li, Zhihong Jiang","doi":"10.34133/2021/9815389","DOIUrl":"https://doi.org/10.34133/2021/9815389","url":null,"abstract":"Using space stations for a large number of observation, exploration, and research is a necessary way to fully develop space technology. It is a necessary means of space experiment to install the extravehicular experimental load by using the load plate. However, the extravehicular environment is full of danger, which poses a threat to the health and even safety of astronauts. Using robots to replace astronauts to complete this task can effectively reduce the threat to astronauts. Aiming at the problem that the configurations of existing space robots have difficulty in balancing the contradiction between complexity and dexterity, our previous work proposes a 12-DOF 3-arm robot and preliminarily explores the feasibility of its large-scale ability. This paper focus on the 8-DOF redundant dexterous manipulator composed of 2 of the robot arms. In view of the difficulties in solving the inverse kinematics of the redundant manipulator, the challenges of complex environmental lighting, and difficulties of matching multiple groups of holes and pins in the load plate assembly task, the research on the autonomous assembly of the load plate is carried out. The main work is as follows: (a) A variable D-H parameter inverse kinematics solution method is proposed, which lays a foundation for humanoid dexterous operation planning of the robot. (b) An autonomous operation method based on visual guidance and variable parameter admittance control is proposed. Finally, the safety and robustness of the robot in the autonomous assembly of the load plate with multipins and holes are successfully verified by experiments.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"43 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77999047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mi Wenbo, Li Qi, Liang Junhong, Zhou Jingyun, Cheng Xiaoli
Mars has only thin atmosphere composed mainly of carbon dioxide that differs significantly from the atmosphere of Earth in terms of characteristics of reentry flows. To connect with the orbiter, the Mars entry capsule is provided with titanium pipes and other units installed on the heat-shield. These units will create significant local interaction flow on the surface of the capsule and cause additional heating on the surface of the shield during the entry of the capsule. With a view to interaction thermal environment issues for the surface of the shield, in this paper, the characteristics of protrusion interaction flow on different location of the shield were studied by means of numerical simulation. Heating mechanisms of protuberances on different location were derived by analyzing characteristic parameters such as local flow velocity, pressure, and Mach number. The results show that the interaction thermal environment of protuberances in the windward area is smaller than that of protuberances in the leeward area, mainly because subsonic flow dominates in the windward area, and the interaction is weak, while in the leeward area, the direction of flow intersects with protuberances to form a boundary layer shear flow, which results in a stronger interaction before the protuberances.
{"title":"Thermal Environment and Aeroheating Mechanism of Protuberances on Mars Entry Capsule","authors":"Mi Wenbo, Li Qi, Liang Junhong, Zhou Jingyun, Cheng Xiaoli","doi":"10.34133/2021/9754068","DOIUrl":"https://doi.org/10.34133/2021/9754068","url":null,"abstract":"Mars has only thin atmosphere composed mainly of carbon dioxide that differs significantly from the atmosphere of Earth in terms of characteristics of reentry flows. To connect with the orbiter, the Mars entry capsule is provided with titanium pipes and other units installed on the heat-shield. These units will create significant local interaction flow on the surface of the capsule and cause additional heating on the surface of the shield during the entry of the capsule. With a view to interaction thermal environment issues for the surface of the shield, in this paper, the characteristics of protrusion interaction flow on different location of the shield were studied by means of numerical simulation. Heating mechanisms of protuberances on different location were derived by analyzing characteristic parameters such as local flow velocity, pressure, and Mach number. The results show that the interaction thermal environment of protuberances in the windward area is smaller than that of protuberances in the leeward area, mainly because subsonic flow dominates in the windward area, and the interaction is weak, while in the leeward area, the direction of flow intersects with protuberances to form a boundary layer shear flow, which results in a stronger interaction before the protuberances.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90707145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The three key orbit design technologies employed in the Chang’e 5 mission are identified and discussed in this paper: orbit design for lunar orbit rendezvous and docking, orbit design for precision lunar landing and inclination optimization, and orbit design for Moon-to-Earth transfer. First, an overview of the Chang’e 5 mission profile is presented, which is followed by detailed discussions of the three key orbit design technologies, including an introduction of the tracking-based orbit design methodology. Flight data are provided to demonstrate the correctness of the designs.
{"title":"Orbit Design Elements of Chang’e 5 Mission","authors":"Zhong-Sheng Wang, Zhanfeng Meng, Shan Gao, Jing Peng","doi":"10.34133/2021/9897105","DOIUrl":"https://doi.org/10.34133/2021/9897105","url":null,"abstract":"The three key orbit design technologies employed in the Chang’e 5 mission are identified and discussed in this paper: orbit design for lunar orbit rendezvous and docking, orbit design for precision lunar landing and inclination optimization, and orbit design for Moon-to-Earth transfer. First, an overview of the Chang’e 5 mission profile is presented, which is followed by detailed discussions of the three key orbit design technologies, including an introduction of the tracking-based orbit design methodology. Flight data are provided to demonstrate the correctness of the designs.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"38 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80682197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojing Zhang, Y. Luo, Yuan Xiao, Deyun Liu, Fan Guo, Qian Guo
There are a variety of applications for asteroid simulants in asteroid studies for science advances as well as technology maturation. For specific purpose, it usually requires purpose-specialized simulant. In this study, we designed and developed a set of prototype simulants as S-type asteroid surface materials analogue based on H, L, and LL ordinary chondrites’ mineralogy and terrestrial observations of near-earth asteroid 2016 HO3, which is the Chinese sample return mission target. These simulants are able to simulate morphology and reflectance characteristics of asteroid (469219) 2016 HO3 and, thus, to be used for engineering evaluation of the optical navigation system and the sampling device of the spacecraft during the mission phase. Meanwhile, these prototype simulants are easily to modify to reflect new findings on the asteroid surface when the spacecraft makes proximate observations.
{"title":"Developing Prototype Simulants for Surface Materials and Morphology of Near Earth Asteroid 2016 HO3","authors":"Xiaojing Zhang, Y. Luo, Yuan Xiao, Deyun Liu, Fan Guo, Qian Guo","doi":"10.34133/2021/9874929","DOIUrl":"https://doi.org/10.34133/2021/9874929","url":null,"abstract":"There are a variety of applications for asteroid simulants in asteroid studies for science advances as well as technology maturation. For specific purpose, it usually requires purpose-specialized simulant. In this study, we designed and developed a set of prototype simulants as S-type asteroid surface materials analogue based on H, L, and LL ordinary chondrites’ mineralogy and terrestrial observations of near-earth asteroid 2016 HO3, which is the Chinese sample return mission target. These simulants are able to simulate morphology and reflectance characteristics of asteroid (469219) 2016 HO3 and, thus, to be used for engineering evaluation of the optical navigation system and the sampling device of the spacecraft during the mission phase. Meanwhile, these prototype simulants are easily to modify to reflect new findings on the asteroid surface when the spacecraft makes proximate observations.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"5 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89295402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingliang Meng, Meiyu Huang, Yao Xu, Naijin Liu, Xueshuang Xiang
For the space-based remote sensing system, onboard intelligent processing based on deep learning has become an inevitable trend. To adapt to the dynamic changes of the observation scenes, there is an urgent need to perform distributed deep learning onboard to fully utilize the plentiful real-time sensing data of multiple satellites from a smart constellation. However, the network bandwidth of the smart constellation is very limited. Therefore, it is of great significance to carry out distributed training research in a low-bandwidth environment. This paper proposes a Randomized Decentralized Parallel Stochastic Gradient Descent (RD-PSGD) method for distributed training in a low-bandwidth network. To reduce the communication cost, each node in RD-PSGD just randomly transfers part of the information of the local intelligent model to its neighborhood. We further speed up the algorithm by optimizing the programming of random index generation and parameter extraction. For the first time, we theoretically analyze the convergence property of the proposed RD-PSGD and validate the advantage of this method by simulation experiments on various distributed training tasks for image classification on different benchmark datasets and deep learning network architectures. The results show that RD-PSGD can effectively save the time and bandwidth cost of distributed training and reduce the complexity of parameter selection compared with the TopK-based method. The method proposed in this paper provides a new perspective for the study of onboard intelligent processing, especially for online learning on a smart satellite constellation.
{"title":"Decentralized Distributed Deep Learning with Low-Bandwidth Consumption for Smart Constellations","authors":"Qingliang Meng, Meiyu Huang, Yao Xu, Naijin Liu, Xueshuang Xiang","doi":"10.34133/2021/9879246","DOIUrl":"https://doi.org/10.34133/2021/9879246","url":null,"abstract":"For the space-based remote sensing system, onboard intelligent processing based on deep learning has become an inevitable trend. To adapt to the dynamic changes of the observation scenes, there is an urgent need to perform distributed deep learning onboard to fully utilize the plentiful real-time sensing data of multiple satellites from a smart constellation. However, the network bandwidth of the smart constellation is very limited. Therefore, it is of great significance to carry out distributed training research in a low-bandwidth environment. This paper proposes a Randomized Decentralized Parallel Stochastic Gradient Descent (RD-PSGD) method for distributed training in a low-bandwidth network. To reduce the communication cost, each node in RD-PSGD just randomly transfers part of the information of the local intelligent model to its neighborhood. We further speed up the algorithm by optimizing the programming of random index generation and parameter extraction. For the first time, we theoretically analyze the convergence property of the proposed RD-PSGD and validate the advantage of this method by simulation experiments on various distributed training tasks for image classification on different benchmark datasets and deep learning network architectures. The results show that RD-PSGD can effectively save the time and bandwidth cost of distributed training and reduce the complexity of parameter selection compared with the TopK-based method. The method proposed in this paper provides a new perspective for the study of onboard intelligent processing, especially for online learning on a smart satellite constellation.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"18 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78664868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Large-scale heterogeneous constellations will be the major forms of future space-based systems, and the implementation of numerous derived applications depends mainly on intersatellite communication. The nodes representing heterogeneous satellites will form the networks with rapidly changing topology. However, few researches have been carried out for such networks. This paper studies the broadcast mechanism for space dynamic networks and establishes centralized and distributed routing framework. And then, performance evaluation indicators are proposed to evaluate both the connectivity of dynamic networks and the effectiveness of routing algorithms. Finally, we examine the performance of multigroup networks and verify the rationality of corresponding indicators. We also explore the impact of information survival time which directly affects the delivery ratio and, if unfortunately, may waste the communication resources. Empirical conclusion about the survival time is given in the final part. We believe the performance indicators and the routing algorithms proposed in this paper are great help to future space-based system and both the broadcast mechanism designing.
{"title":"Performance Evaluation Indicators of Space Dynamic Networks under Broadcast Mechanism","authors":"Zipeng Ye, Qingrui Zhou","doi":"10.34133/2021/9826517","DOIUrl":"https://doi.org/10.34133/2021/9826517","url":null,"abstract":"Large-scale heterogeneous constellations will be the major forms of future space-based systems, and the implementation of numerous derived applications depends mainly on intersatellite communication. The nodes representing heterogeneous satellites will form the networks with rapidly changing topology. However, few researches have been carried out for such networks. This paper studies the broadcast mechanism for space dynamic networks and establishes centralized and distributed routing framework. And then, performance evaluation indicators are proposed to evaluate both the connectivity of dynamic networks and the effectiveness of routing algorithms. Finally, we examine the performance of multigroup networks and verify the rationality of corresponding indicators. We also explore the impact of information survival time which directly affects the delivery ratio and, if unfortunately, may waste the communication resources. Empirical conclusion about the survival time is given in the final part. We believe the performance indicators and the routing algorithms proposed in this paper are great help to future space-based system and both the broadcast mechanism designing.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"21 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75625117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianfei Li, Yaobing Wang, Zhiyong Liu, Xin Jing, Chengwei Hu
In this paper, a new recursive implementation of composite adaptive control for robot manipulators is proposed. We investigate the recursive composite adaptive algorithm and prove the stability directly based on the Newton-Euler equations in matrix form, which, to our knowledge, is the first result on this point in the literature. The proposed algorithm has an amount of computation On, which is less than any existing similar algorithms and can satisfy the computation need of the complicated multidegree manipulators. The manipulator of the Chinese Space Station is employed as a simulation example, and the results verify the effectiveness of this proposed recursive algorithm.
{"title":"A New Recursive Composite Adaptive Controller for Robot Manipulators","authors":"Jianfei Li, Yaobing Wang, Zhiyong Liu, Xin Jing, Chengwei Hu","doi":"10.34133/2021/9801421","DOIUrl":"https://doi.org/10.34133/2021/9801421","url":null,"abstract":"In this paper, a new recursive implementation of composite adaptive control for robot manipulators is proposed. We investigate the recursive composite adaptive algorithm and prove the stability directly based on the Newton-Euler equations in matrix form, which, to our knowledge, is the first result on this point in the literature. The proposed algorithm has an amount of computation On, which is less than any existing similar algorithms and can satisfy the computation need of the complicated multidegree manipulators. The manipulator of the Chinese Space Station is employed as a simulation example, and the results verify the effectiveness of this proposed recursive algorithm.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"16 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73199400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}