Triwiyanto Triwiyanto, W. Caesarendra, Vugar Abdullayev, A. Ahmed, H. Herianto
Post-stroke can cause partial or complete paralysis of the human limb. Delayed rehabilitation steps in post-stroke patients can cause muscle atrophy and limb stiffness. Post-stroke patients require an upper limb exoskeleton device for the rehabilitation process. Several previous studies used more than one electrode lead to control the exoskeleton. The use of many electrode leads can lead to an increase in complexity in terms of hardware and software. Therefore, this research aims to develop single lead EMG pattern recognition to control an upper limb exoskeleton. The main contribution of this research is that the robotic upper limb exoskeleton device can be controlled using a single lead EMG. EMG signals were tapped at the biceps point with a sampling frequency of 2000 Hz. A Raspberry Pi 3B+ was used to embed the data acquisition, feature extraction, classification and motor control by using multithread algorithm. The exoskeleton arm frame is made using 3D printing technology using a high torque servo motor drive. The control process is carried out by extracting EMG signals using EMG features (mean absolute value, root mean square, variance) further extraction results will be trained on machine learning (decision tree (DT), linear regression (LR), polynomial regression (PR), and random forest (RF)). The results show that machine learning decision tree and random forest produce the highest accuracy compared to other classifiers. The accuracy of DT and RF are of 96.36±0.54% and 95.67±0.76%, respectively. Combining the EMG features, shows that there is no significant difference in accuracy (p-value 0.05). A single lead EMG electrode can control the upper limb exoskeleton robot device well.
{"title":"Single Lead EMG signal to Control an Upper Limb Exoskeleton Using Embedded Machine Learning on Raspberry Pi","authors":"Triwiyanto Triwiyanto, W. Caesarendra, Vugar Abdullayev, A. Ahmed, H. Herianto","doi":"10.18196/jrc.v4i1.17364","DOIUrl":"https://doi.org/10.18196/jrc.v4i1.17364","url":null,"abstract":"Post-stroke can cause partial or complete paralysis of the human limb. Delayed rehabilitation steps in post-stroke patients can cause muscle atrophy and limb stiffness. Post-stroke patients require an upper limb exoskeleton device for the rehabilitation process. Several previous studies used more than one electrode lead to control the exoskeleton. The use of many electrode leads can lead to an increase in complexity in terms of hardware and software. Therefore, this research aims to develop single lead EMG pattern recognition to control an upper limb exoskeleton. The main contribution of this research is that the robotic upper limb exoskeleton device can be controlled using a single lead EMG. EMG signals were tapped at the biceps point with a sampling frequency of 2000 Hz. A Raspberry Pi 3B+ was used to embed the data acquisition, feature extraction, classification and motor control by using multithread algorithm. The exoskeleton arm frame is made using 3D printing technology using a high torque servo motor drive. The control process is carried out by extracting EMG signals using EMG features (mean absolute value, root mean square, variance) further extraction results will be trained on machine learning (decision tree (DT), linear regression (LR), polynomial regression (PR), and random forest (RF)). The results show that machine learning decision tree and random forest produce the highest accuracy compared to other classifiers. The accuracy of DT and RF are of 96.36±0.54% and 95.67±0.76%, respectively. Combining the EMG features, shows that there is no significant difference in accuracy (p-value 0.05). A single lead EMG electrode can control the upper limb exoskeleton robot device well.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125823192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research introduces a dual design proportional–integral–derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chien–Hrones–Reswick (CHR) technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption.
{"title":"Dual Design PID Controller for Robotic Manipulator Application","authors":"Phichitphon Chotikunnan, Rawiphon Chotikunnan","doi":"10.18196/jrc.v4i1.16990","DOIUrl":"https://doi.org/10.18196/jrc.v4i1.16990","url":null,"abstract":"This research introduces a dual design proportional–integral–derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chien–Hrones–Reswick (CHR) technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128466583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaoutar Dahmane, El Mahfoud Boulaoutaq, B. Bouachrine, M. Ajaamoum, Belkasem Imodane, Sana Mouslim, Mohamed Benydir
In the field of wind turbine performance optimization, many techniques are employed to track the maximum power point (MPPT), one of the most commonly used MPPT algorithms is the perturb and observe technique (PO) because of its ease of implementation. However, the main disadvantage of this method is the lack of accuracy due to fluctuations around the maximum power point. In contrast, MPPT control employing neural networks proved to be an effective solution, in terms of accuracy. The contribution of this work is to propose a hybrid maximum power point tracking control using two types of MPPT control: neural network control (NNC) and the perturbation and observe method (PO), thus the PO method can offer better performance. Furthermore, this study aims to provide a comparison of the hybrid method with each algorithm 𝑃𝑂 and NNC. At the resulting duty cycle of the 2 methods, we applied the combination operation. A DC-DC boost converter is subjected to the hybrid MPPT control. This converter is part of a wind energy conversion system employing a permanent magnet synchronous generator (PMSG). The chain is modeled using MATLAB/Simulink software. The effectiveness of the controller is tested at varying wind speeds. In terms of the Integral time absolute error (ITAE), using the PO technique, the ITAE is 9.72. But, if we apply the suggested technique, it is smaller at 4.55. The corresponding simulation results show that the proposed hybrid method performs best compared to the PO method. Simulation results ensure the performance of the proposed hybrid MPPT control.
{"title":"Hybrid MPPT Control: P&O and Neural Network for Wind Energy Conversion System","authors":"Kaoutar Dahmane, El Mahfoud Boulaoutaq, B. Bouachrine, M. Ajaamoum, Belkasem Imodane, Sana Mouslim, Mohamed Benydir","doi":"10.18196/jrc.v4i1.16770","DOIUrl":"https://doi.org/10.18196/jrc.v4i1.16770","url":null,"abstract":"In the field of wind turbine performance optimization, many techniques are employed to track the maximum power point (MPPT), one of the most commonly used MPPT algorithms is the perturb and observe technique (PO) because of its ease of implementation. However, the main disadvantage of this method is the lack of accuracy due to fluctuations around the maximum power point. In contrast, MPPT control employing neural networks proved to be an effective solution, in terms of accuracy. The contribution of this work is to propose a hybrid maximum power point tracking control using two types of MPPT control: neural network control (NNC) and the perturbation and observe method (PO), thus the PO method can offer better performance. Furthermore, this study aims to provide a comparison of the hybrid method with each algorithm 𝑃𝑂 and NNC. At the resulting duty cycle of the 2 methods, we applied the combination operation. A DC-DC boost converter is subjected to the hybrid MPPT control. This converter is part of a wind energy conversion system employing a permanent magnet synchronous generator (PMSG). The chain is modeled using MATLAB/Simulink software. The effectiveness of the controller is tested at varying wind speeds. In terms of the Integral time absolute error (ITAE), using the PO technique, the ITAE is 9.72. But, if we apply the suggested technique, it is smaller at 4.55. The corresponding simulation results show that the proposed hybrid method performs best compared to the PO method. Simulation results ensure the performance of the proposed hybrid MPPT control. ","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126718067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Power system stabilizer (PSS) is applied to dampen system oscillations so that the frequency does not deviate beyond tolerance. PSS parameter tuning is increasingly difficult when dealing with complex and nonlinear systems. This paper presents a novel hybrid algorithm developed from incorporating chaotic maps into the sea-horse optimizer. The algorithm developed is called the chaotic sea-horse optimizer (CSHO). The proposed method is adopted from the metaheuristic method, namely the sea-horse optimizer (SHO). The SHO is a method that duplicates the life of a sea-horse in the ocean when it moves, looks for prey and breeds. In This paper, The CSHO method is used to tune the power system stabilizer parameters on a single machine system. The proposed method validates the benchmark function and performance on a single machine system against transient response. Several metaheuristic methods are used as a comparison to determine the effectiveness and efficiency of the proposed method. From the research, it was found that the application of the logistics Tent map from the chaotic map showed optimal performance. In addition, the application of the PSS shows effective and efficient performance in reducing overshoot in transient conditions.
{"title":"A Novel Improved Sea-Horse Optimizer for Tuning Parameter Power System Stabilizer","authors":"Widi Aribowo","doi":"10.18196/jrc.v4i1.16445","DOIUrl":"https://doi.org/10.18196/jrc.v4i1.16445","url":null,"abstract":"Power system stabilizer (PSS) is applied to dampen system oscillations so that the frequency does not deviate beyond tolerance. PSS parameter tuning is increasingly difficult when dealing with complex and nonlinear systems. This paper presents a novel hybrid algorithm developed from incorporating chaotic maps into the sea-horse optimizer. The algorithm developed is called the chaotic sea-horse optimizer (CSHO). The proposed method is adopted from the metaheuristic method, namely the sea-horse optimizer (SHO). The SHO is a method that duplicates the life of a sea-horse in the ocean when it moves, looks for prey and breeds. In This paper, The CSHO method is used to tune the power system stabilizer parameters on a single machine system. The proposed method validates the benchmark function and performance on a single machine system against transient response. Several metaheuristic methods are used as a comparison to determine the effectiveness and efficiency of the proposed method. From the research, it was found that the application of the logistics Tent map from the chaotic map showed optimal performance. In addition, the application of the PSS shows effective and efficient performance in reducing overshoot in transient conditions.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128829755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ma’arif, M. A. M. Vera, M. Mahmoud, E. Umoh, A. Abougarair, Safinta Nurindra Rahmadhia
This paper presents a control system design for a magnetic levitation system (Maglev) or MLS using sliding mode control (SMC). The MLS problem of levitating the object in the air will be solved using the controller. Inductors used in MLS make the system have nonlinear characteristics. Thus, a nonlinear controller is the most suitable control design for MLS. SMC is one of the nonlinear controllers with good robustness and can handle any model mismatch. Based on simulation results with a step as input reference, MLS provided good system performances: 0.0991s rise time, 0.1712s settling time, and 0.0159 overshoot. Moreover, a prominent tracking control for sine wave reference was also shown. Although the augmented system had a chattering effect on the control signal, the chattering control signal did not affect MLS performances.
{"title":"Sliding Mode Control Design for Magnetic Levitation System","authors":"A. Ma’arif, M. A. M. Vera, M. Mahmoud, E. Umoh, A. Abougarair, Safinta Nurindra Rahmadhia","doi":"10.18196/jrc.v3i6.12389","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.12389","url":null,"abstract":"This paper presents a control system design for a magnetic levitation system (Maglev) or MLS using sliding mode control (SMC). The MLS problem of levitating the object in the air will be solved using the controller. Inductors used in MLS make the system have nonlinear characteristics. Thus, a nonlinear controller is the most suitable control design for MLS. SMC is one of the nonlinear controllers with good robustness and can handle any model mismatch. Based on simulation results with a step as input reference, MLS provided good system performances: 0.0991s rise time, 0.1712s settling time, and 0.0159 overshoot. Moreover, a prominent tracking control for sine wave reference was also shown. Although the augmented system had a chattering effect on the control signal, the chattering control signal did not affect MLS performances.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116930624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems.
{"title":"Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications","authors":"B. Skorohod","doi":"10.18196/jrc.v3i6.16058","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.16058","url":null,"abstract":"It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130175309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.
{"title":"Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)","authors":"Saadya Fahad Jabbar","doi":"10.18196/jrc.v3i6.16201","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.16201","url":null,"abstract":"In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like identifying the sequence of events in the Laparoscopic Cholecystectomy (LC). This study will contribute to show the effectiveness of CNN-CLM approach on laparoscopic cholecystectomy, which will frequently focus on surgical computer vision analysis of surgical safety and related applications. The method of study is deep learning based CNN-CLM to better detect nominal safety as well as unsafe practices around the critical view of safety and AI-based grading scale. The general design flow of AI-recognition of surgical safety is firstly collecting safety surgical videos for frame segmenting and phase according to the image context by surgeon reviewer by CNN-CLM. For this advance research, the dataset is splatted into three main parts where 70% of which is used for training, 15% of which is used for testing and the rest for the cross validation, to achieve the accuracy up to 98.79% of this specific research. For result part, different metrics of CNN-CLM to evaluate the performance of the proposed model of safety in surgery. The study uses one of the top three performing methods CNN-CLM for the evaluation yields and anatomical structures in laparoscopic cholecystectomy surgery.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126350828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of Deep Bayesian Neural Network (DBNN) for the personalized treatment of leukemia cancer has shown a significant tested accuracy for the model. DBNNs used in this study was able to classify images with accuracy exceeding 98.73%. This study depicts that the DBNN can classify cell cultures only based on unstained light microscope images which allow their further use. Therefore, building a bayesian‐based model to great help during commercial cell culturing, and possibly a first step in the process of creating an automated/semiautomated neural network‐based model for classification of good and bad quality cultures when images of such will be available.
{"title":"Artificial Intelligence Based Deep Bayesian Neural Network (DBNN) Toward Personalized Treatment of Leukemia with Stem Cells","authors":"Asma Khazaal Abdulsahib","doi":"10.18196/jrc.v3i6.16200","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.16200","url":null,"abstract":"The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of Deep Bayesian Neural Network (DBNN) for the personalized treatment of leukemia cancer has shown a significant tested accuracy for the model. DBNNs used in this study was able to classify images with accuracy exceeding 98.73%. This study depicts that the DBNN can classify cell cultures only based on unstained light microscope images which allow their further use. Therefore, building a bayesian‐based model to great help during commercial cell culturing, and possibly a first step in the process of creating an automated/semiautomated neural network‐based model for classification of good and bad quality cultures when images of such will be available.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"53 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132575026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aseel B. Alnajjar, Azhar M. Kadim, Ruaa Abdullah Jaber, Najwan Abed Hasan, Ehsan Qahtan Ahmed, M. S. M. Altaei, Ahmed L. Khalaf
Wireless Sensor Network (WSN) is a high potential technology used in many fields (agriculture, earth, environmental monitoring, resources union, health, security, military, and transport, IoT technology). The band width of each cluster head is specific, thus, the number of sensors connected to each cluster head is restricted to a maximum limit and exceeding it will weaken the connection service between each sensor and its corresponding cluster head. This will achieve the research objective which refers to reaching the state where the proposed system energy is stable and not consuming further more cost. The main challenge is how to distribute the cluster heads regularly on a specified area, that’s why a solution was supposed in this research implies finding the best distribution of the cluster heads using a genetic algorithm. Where using an optimization algorithm, keeping in mind the cluster heads positions restrictions, is an important scientific contribution in the research field of interest. The novel idea in this paper is the crossover of two-dimensional integer encoded individuals that replacing an opposite region in the parents to produce the children of new generation. The mutation occurs with probability of 0.001, it changes the type of 0.05 sensors found in handled individual. After producing more than 1000 generations, the achieved results showed lower value of fitness function with stable behavior. This indicates the correct path of computations and the accuracy of the obtained results. The genetic algorithm operated well and directed the process towards improving the genes to be the best possible at the last generation. The behavior of the objective function started to be regular gradually throughout the produced generations until reaching the best product in the last generation where it is shown that all the sensors are connected to the nearest cluster head. As a conclusion, the genetic algorithm developed the sensors’ distribution in the WSN model, which confirms the validity of applying of genetic algorithms and the accuracy of the results.
{"title":"Wireless Sensor Network Optimization Using Genetic Algorithm","authors":"Aseel B. Alnajjar, Azhar M. Kadim, Ruaa Abdullah Jaber, Najwan Abed Hasan, Ehsan Qahtan Ahmed, M. S. M. Altaei, Ahmed L. Khalaf","doi":"10.18196/jrc.v3i6.16526","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.16526","url":null,"abstract":"Wireless Sensor Network (WSN) is a high potential technology used in many fields (agriculture, earth, environmental monitoring, resources union, health, security, military, and transport, IoT technology). The band width of each cluster head is specific, thus, the number of sensors connected to each cluster head is restricted to a maximum limit and exceeding it will weaken the connection service between each sensor and its corresponding cluster head. This will achieve the research objective which refers to reaching the state where the proposed system energy is stable and not consuming further more cost. The main challenge is how to distribute the cluster heads regularly on a specified area, that’s why a solution was supposed in this research implies finding the best distribution of the cluster heads using a genetic algorithm. Where using an optimization algorithm, keeping in mind the cluster heads positions restrictions, is an important scientific contribution in the research field of interest. The novel idea in this paper is the crossover of two-dimensional integer encoded individuals that replacing an opposite region in the parents to produce the children of new generation. The mutation occurs with probability of 0.001, it changes the type of 0.05 sensors found in handled individual. After producing more than 1000 generations, the achieved results showed lower value of fitness function with stable behavior. This indicates the correct path of computations and the accuracy of the obtained results. The genetic algorithm operated well and directed the process towards improving the genes to be the best possible at the last generation. The behavior of the objective function started to be regular gradually throughout the produced generations until reaching the best product in the last generation where it is shown that all the sensors are connected to the nearest cluster head. As a conclusion, the genetic algorithm developed the sensors’ distribution in the WSN model, which confirms the validity of applying of genetic algorithms and the accuracy of the results.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116619113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. N. Hidayah, Syafeeza Ahmad Radzi, Norazlina Abdul Razak, Wira Hidayat Bin Mohd Saad, Y. Wong, A. A. Naja
Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.
{"title":"Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision","authors":"A. N. Hidayah, Syafeeza Ahmad Radzi, Norazlina Abdul Razak, Wira Hidayat Bin Mohd Saad, Y. Wong, A. A. Naja","doi":"10.18196/jrc.v3i6.15948","DOIUrl":"https://doi.org/10.18196/jrc.v3i6.15948","url":null,"abstract":"Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123005380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}