Pub Date : 2023-11-22eCollection Date: 2023-10-01DOI: 10.2106/JBJS.ST.22.00058
Ittai Shichman, Akram A Habibi, Joseph X Robin, Anthony C Gemayel, Dylan T Lowe, Ran Schwarzkopf
Background: The use of a cemented monoblock dual-mobility implant into a fully porous cup is indicated for patients with acetabular bone loss who have a high risk of postoperative hip instability. Patients undergoing lumbar fusion for sagittal spinal deformities have an increased risk of hip dislocation (7.1%) and should be assessed on sitting and standing radiographs1. Gabor et al. conducted a multicenter, retrospective study assessing the use of a cemented monoblock dual-mobility bearing in a porous acetabular shell in patients with acetabular bone loss and a high risk of hip instability2. Of the 38 patients, 1 (2.6%) experienced a postoperative dislocation that was subsequently treated with closed reduction without further dislocation. This surgical technique represents a favorable surgical option for patients with acetabular bone loss who are at risk for hip instability. In the example case described in the present video article, the patients had a history of dislocations, lumbar fusion, and evidence of Paprosky 3B acetabular defect; as such, the decision was made to revise to a porous shell and cement a monoblock dual-mobility implant.
Description: With use of the surgeon's preferred approach, the soft tissue is dissected and the hip is aspirated. The hip is dislocated and a subgluteal pocket is made with use of electrocautery to mobilize the trunnion of the femoral stem to aid in acetabular exposure. The femoral component is assessed to ensure appropriate positioning with adequate anteversion. The acetabular component and any acetabular screws are removed. A "ream to fit" technique is performed in the acetabulum until bleeding bone is encountered, with minimal reaming performed in healthy bone from the posterior column. A trial prosthesis is placed within the acetabulum to evaluate if there is satisfactory fixation and if any augment is necessary. Care must be taken during reaming to ensure that enough bone is reamed to accommodate a porous shell that can fit the monoblock dual-mobility implant with a 2-mm cement mantle. Smaller porous shells measuring 56 mm are available for smaller defects but are often not utilized in cases of substantial acetabular bone loss. Fresh-frozen cancellous allograft is utilized to fill any contained defects. The revision porous shell with circumferential screw holes is utilized to allow for screw fixation posterosuperior and anterior toward the pubis. The implants are dried prior to placement of the cement. The cement is applied to the shell and the monoblock dual-mobility implant to ensure adequate coverage. Antibiotic-loaded cement can be utilized according to surgeon preference. Excess cement is removed under direct visualization while the cement is drying, and the position of the dual-mobility implant is adjusted in approximately 20° anteversion and 40° inclination. Stability is assessed after the cement cures, and intraoperative radiography
{"title":"Cementing a Monoblock Dual-Mobility Implant into a Fully Porous Cup in Revision Total Hip Arthroplasty to Address Hip Instability: Surgical Technique.","authors":"Ittai Shichman, Akram A Habibi, Joseph X Robin, Anthony C Gemayel, Dylan T Lowe, Ran Schwarzkopf","doi":"10.2106/JBJS.ST.22.00058","DOIUrl":"10.2106/JBJS.ST.22.00058","url":null,"abstract":"<p><strong>Background: </strong>The use of a cemented monoblock dual-mobility implant into a fully porous cup is indicated for patients with acetabular bone loss who have a high risk of postoperative hip instability. Patients undergoing lumbar fusion for sagittal spinal deformities have an increased risk of hip dislocation (7.1%) and should be assessed on sitting and standing radiographs<sup>1</sup>. Gabor et al. conducted a multicenter, retrospective study assessing the use of a cemented monoblock dual-mobility bearing in a porous acetabular shell in patients with acetabular bone loss and a high risk of hip instability<sup>2</sup>. Of the 38 patients, 1 (2.6%) experienced a postoperative dislocation that was subsequently treated with closed reduction without further dislocation. This surgical technique represents a favorable surgical option for patients with acetabular bone loss who are at risk for hip instability. In the example case described in the present video article, the patients had a history of dislocations, lumbar fusion, and evidence of Paprosky 3B acetabular defect; as such, the decision was made to revise to a porous shell and cement a monoblock dual-mobility implant.</p><p><strong>Description: </strong>With use of the surgeon's preferred approach, the soft tissue is dissected and the hip is aspirated. The hip is dislocated and a subgluteal pocket is made with use of electrocautery to mobilize the trunnion of the femoral stem to aid in acetabular exposure. The femoral component is assessed to ensure appropriate positioning with adequate anteversion. The acetabular component and any acetabular screws are removed. A \"ream to fit\" technique is performed in the acetabulum until bleeding bone is encountered, with minimal reaming performed in healthy bone from the posterior column. A trial prosthesis is placed within the acetabulum to evaluate if there is satisfactory fixation and if any augment is necessary. Care must be taken during reaming to ensure that enough bone is reamed to accommodate a porous shell that can fit the monoblock dual-mobility implant with a 2-mm cement mantle. Smaller porous shells measuring 56 mm are available for smaller defects but are often not utilized in cases of substantial acetabular bone loss. Fresh-frozen cancellous allograft is utilized to fill any contained defects. The revision porous shell with circumferential screw holes is utilized to allow for screw fixation posterosuperior and anterior toward the pubis. The implants are dried prior to placement of the cement. The cement is applied to the shell and the monoblock dual-mobility implant to ensure adequate coverage. Antibiotic-loaded cement can be utilized according to surgeon preference. Excess cement is removed under direct visualization while the cement is drying, and the position of the dual-mobility implant is adjusted in approximately 20° anteversion and 40° inclination. Stability is assessed after the cement cures, and intraoperative radiography ","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863941/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30eCollection Date: 2023-07-01DOI: 10.2106/JBJS.ST.22.00027
Clément Jeandel, Nicolas Bremond, Marie Christine de Maximin, Yan Lefèvre, Aurélien Courvoisier
Background: Vertebral body tethering (VBT) is indicated for skeletally immature patients with progressive adolescent idiopathic scoliosis (AIS) who have failed or are intolerant of bracing and who have a major coronal curve of 40° to 65°. The vertebral body must be structurally and dimensionally adequate to accommodate screw fixation, as determined radiographically. The best indication for VBT is a flexible single major thoracic curve with nonstructural compensating lumbar and proximal thoracic curves (Lenke 1A or 1B). VBT allows for progressive correction of the deformity without spinal fusion by utilizing a minimally invasive fluoroscopic technique.
Description: The procedure for a right thoracic curve is performed with use of a right thoracoscopic approach with the patient in the left lateral decubitus position. The thoracoscope is introduced through a portal at the apex of the curvature in the posterior axillary line. Instrument portals are created lateral to each vertebral body in the mid-axillary line. Screws are inserted into each vertebral body under biplanar fluoroscopic control and with intraoperative neuromonitoring. An electroconductivity probing device, while not mandatory, is routinely utilized at our practice. The tether is attached to the most proximal screw of the construct, and then reduction is obtained sequentially by tensioning the tether from one vertebral screw to the next.
Alternatives: Bracing is the gold-standard treatment for progressive AIS involving the immature spine. The most commonly utilized surgical treatment is posterior spinal fusion (PSF), which should be considered when the major coronal curve exceeds 45°.
Rationale: PSF has proven to be a dependable technique to correct scoliotic deformities. It has a low complication rate and good long-term outcomes. However, concerns exist regarding the stiffness conferred by PSF and the long-term effects of adjacent segment disease. Thus, interest had developed in non-fusion solutions for AIS correction. VBT utilizes the Hueter-Volkmann principle to guide growth and correct deformity. Compressive forces applied to the convexity of the deformity by a polyethylene tether allow the patient's growth to realign the spine. Intraoperative correction triggers growth modulation, and most of the modulation seems to occur during the first 12 months postoperatively. The best results have been seen with a short Lenke type-1A curve in a patient with closed triradiate cartilage, a Risser 3 or lower (ideally Risser 0) iliac apophysis, and a flexible curve characterized by a 50% reduction of the major coronal curve angle on side-bending radiographs.
Expected outcomes: In 57 immature patients with a Lenke type-1A or 1B curve (i.e., a 30° to 65° preoperative Cobb angle), Samdani et al.3 found a main thoracic Cobb angle reduction from 40° ± 7° preoperatively to 19° ± 13°
{"title":"Thoracoscopic Anterior Vertebral Body Tethering in Lenke Type-1 Right Adolescent Idiopathic Scoliosis.","authors":"Clément Jeandel, Nicolas Bremond, Marie Christine de Maximin, Yan Lefèvre, Aurélien Courvoisier","doi":"10.2106/JBJS.ST.22.00027","DOIUrl":"10.2106/JBJS.ST.22.00027","url":null,"abstract":"<p><strong>Background: </strong>Vertebral body tethering (VBT) is indicated for skeletally immature patients with progressive adolescent idiopathic scoliosis (AIS) who have failed or are intolerant of bracing and who have a major coronal curve of 40° to 65°. The vertebral body must be structurally and dimensionally adequate to accommodate screw fixation, as determined radiographically. The best indication for VBT is a flexible single major thoracic curve with nonstructural compensating lumbar and proximal thoracic curves (Lenke 1A or 1B). VBT allows for progressive correction of the deformity without spinal fusion by utilizing a minimally invasive fluoroscopic technique.</p><p><strong>Description: </strong>The procedure for a right thoracic curve is performed with use of a right thoracoscopic approach with the patient in the left lateral decubitus position. The thoracoscope is introduced through a portal at the apex of the curvature in the posterior axillary line. Instrument portals are created lateral to each vertebral body in the mid-axillary line. Screws are inserted into each vertebral body under biplanar fluoroscopic control and with intraoperative neuromonitoring. An electroconductivity probing device, while not mandatory, is routinely utilized at our practice. The tether is attached to the most proximal screw of the construct, and then reduction is obtained sequentially by tensioning the tether from one vertebral screw to the next.</p><p><strong>Alternatives: </strong>Bracing is the gold-standard treatment for progressive AIS involving the immature spine. The most commonly utilized surgical treatment is posterior spinal fusion (PSF), which should be considered when the major coronal curve exceeds 45°.</p><p><strong>Rationale: </strong>PSF has proven to be a dependable technique to correct scoliotic deformities. It has a low complication rate and good long-term outcomes. However, concerns exist regarding the stiffness conferred by PSF and the long-term effects of adjacent segment disease. Thus, interest had developed in non-fusion solutions for AIS correction. VBT utilizes the Hueter-Volkmann principle to guide growth and correct deformity. Compressive forces applied to the convexity of the deformity by a polyethylene tether allow the patient's growth to realign the spine. Intraoperative correction triggers growth modulation, and most of the modulation seems to occur during the first 12 months postoperatively. The best results have been seen with a short Lenke type-1A curve in a patient with closed triradiate cartilage, a Risser 3 or lower (ideally Risser 0) iliac apophysis, and a flexible curve characterized by a 50% reduction of the major coronal curve angle on side-bending radiographs.</p><p><strong>Expected outcomes: </strong>In 57 immature patients with a Lenke type-1A or 1B curve (i.e., a 30° to 65° preoperative Cobb angle), Samdani et al.<sup>3</sup> found a main thoracic Cobb angle reduction from 40° ± 7° preoperatively to 19° ± 13°","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67755128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-24eCollection Date: 2023-07-01DOI: 10.2106/JBJS.ST.22.00038
Colin J Harrington, Marissa Dearden, John Richards, Matthew Carty, Jason Souza, Benjamin K Potter
<p><strong>Background: </strong>The agonist-antagonist myoneural interface (AMI) technique at the time of transtibial amputation involves the use of agonist-antagonist muscle pairs to restore natural contraction-stretch relationships and to improve proprioceptive feedback when utilizing a prosthetic limb<sup>1</sup>.</p><p><strong>Description: </strong>Utilizing the standard incision for a long posterior myofasciocutaneous flap, the lateral and medial aspects of the limb are dissected, identifying and preserving the superficial peroneal and saphenous nerve, respectively. The tendons of the tibialis anterior and peroneus longus are transected distally to allow adequate length for the AMI constructs. After ligation of the anterior tibial vessels, the deep peroneal nerve is identified and tagged to create a regenerative peripheral nerve interface (RPNI). The tibia and fibula are cut approximately 15 cm from the medial joint line, facilitating dissection of the deep posterior compartment and ligation of the peroneal and posterior tibial vessels. The tendons of the lateral gastrocnemius and tibialis posterior are transected distally, and the amputation is completed. The extensor retinaculum is harvested from the residual limb along with multiple 2 × 3-cm free muscle grafts, which will be used for the RPNI constructs. The retinaculum is secured to the tibia with suture anchors, and AMI pairs of the lateral gastrocnemius and tibialis anterior as well as the tibialis posterior and peroneus longus are constructed. Separate RPNIs of the major lower-extremity nerves are performed, and the wound is closed in a standard layered fashion.</p><p><strong>Alternatives: </strong>An isometric myodesis of the gastrocnemius without coaptation of agonist-antagonist muscle pairs can be performed at the time of transtibial amputation.</p><p><strong>Rationale: </strong>The AMI technique restores natural agonist-antagonist relationships at the time of transtibial amputation to increase proprioceptive feedback and improve prosthetic control. These outcomes contrast with those of a traditional isometric myodesis, which prevents proprioceptive communication from the residual limb musculature to the central nervous system. Additionally, the AMI technique allows for concentric and eccentric muscular contractions, which may contribute to the maintenance of limb volume and aid with prosthetic fitting, as opposed to the typical limb atrophy observed following standard transtibial amputation<sup>1,2</sup>. With the development and availability of more advanced prostheses, the AMI technique offers more precise control and increases the functionality of these innovative devices.</p><p><strong>Expected outcomes: </strong>Early clinical outcomes of the AMI technique at the time of transtibial amputation have been promising. In a case series of the first 3 patients who underwent the procedure, complications were minor and consisted of 2 episodes of cellulitis and 1 case of delayed wound
{"title":"The Agonist-Antagonist Myoneural Interface in a Transtibial Amputation.","authors":"Colin J Harrington, Marissa Dearden, John Richards, Matthew Carty, Jason Souza, Benjamin K Potter","doi":"10.2106/JBJS.ST.22.00038","DOIUrl":"10.2106/JBJS.ST.22.00038","url":null,"abstract":"<p><strong>Background: </strong>The agonist-antagonist myoneural interface (AMI) technique at the time of transtibial amputation involves the use of agonist-antagonist muscle pairs to restore natural contraction-stretch relationships and to improve proprioceptive feedback when utilizing a prosthetic limb<sup>1</sup>.</p><p><strong>Description: </strong>Utilizing the standard incision for a long posterior myofasciocutaneous flap, the lateral and medial aspects of the limb are dissected, identifying and preserving the superficial peroneal and saphenous nerve, respectively. The tendons of the tibialis anterior and peroneus longus are transected distally to allow adequate length for the AMI constructs. After ligation of the anterior tibial vessels, the deep peroneal nerve is identified and tagged to create a regenerative peripheral nerve interface (RPNI). The tibia and fibula are cut approximately 15 cm from the medial joint line, facilitating dissection of the deep posterior compartment and ligation of the peroneal and posterior tibial vessels. The tendons of the lateral gastrocnemius and tibialis posterior are transected distally, and the amputation is completed. The extensor retinaculum is harvested from the residual limb along with multiple 2 × 3-cm free muscle grafts, which will be used for the RPNI constructs. The retinaculum is secured to the tibia with suture anchors, and AMI pairs of the lateral gastrocnemius and tibialis anterior as well as the tibialis posterior and peroneus longus are constructed. Separate RPNIs of the major lower-extremity nerves are performed, and the wound is closed in a standard layered fashion.</p><p><strong>Alternatives: </strong>An isometric myodesis of the gastrocnemius without coaptation of agonist-antagonist muscle pairs can be performed at the time of transtibial amputation.</p><p><strong>Rationale: </strong>The AMI technique restores natural agonist-antagonist relationships at the time of transtibial amputation to increase proprioceptive feedback and improve prosthetic control. These outcomes contrast with those of a traditional isometric myodesis, which prevents proprioceptive communication from the residual limb musculature to the central nervous system. Additionally, the AMI technique allows for concentric and eccentric muscular contractions, which may contribute to the maintenance of limb volume and aid with prosthetic fitting, as opposed to the typical limb atrophy observed following standard transtibial amputation<sup>1,2</sup>. With the development and availability of more advanced prostheses, the AMI technique offers more precise control and increases the functionality of these innovative devices.</p><p><strong>Expected outcomes: </strong>Early clinical outcomes of the AMI technique at the time of transtibial amputation have been promising. In a case series of the first 3 patients who underwent the procedure, complications were minor and consisted of 2 episodes of cellulitis and 1 case of delayed wound","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67755218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Background: </strong>Meniscal extrusion is a phenomenon in which a degenerative posterior horn tear, radial tear, or root tear results in displacement of the body of the meniscus medial to the tibial rim. The paramount function of the meniscus is to provide load distribution across the knee joint. Meniscal extrusion will prevent the meniscus from properly fulfilling this function and eventually leads to progression of osteoarthritis<sup>1</sup>. Thus, root repair accompanied by arthroscopic meniscal extrusion repair (by a centralization technique) has been suggested for restoration of meniscal function<sup>2-5</sup>. There are various techniques to correct meniscal extrusion, including a dual-tunnel suture pull-out technique<sup>2</sup> (to address extrusion and root tear<sup>2</sup>), a knotless suture anchor<sup>4,6</sup> technique, and an all-inside suture anchor repair<sup>7</sup>. The indications for extrusion repair are not consistently reported in the literature, and the procedure is not always easy to perform. Currently, there is no consensus regarding the ideal technique. In the present article, we describe the steps for successful combined medial meniscal root repair with extrusion repair and centralization.</p><p><strong>Description: </strong>Place the patient in the supine position with the knee supported in 90° of flexion and the feet at the edge of the operating table with foot-positioner support. First, meniscal root repair is performed with use of the suture pull-out technique, utilizing a cinch suture configuration to hold the root in place, and the suture tapes are fixed over the anterior cortex of the tibia with a suture button. Next, the meniscal body is arthroscopically assessed for residual extrusion from the medial tibial rim. Extrusion repair is indicated in cases with >3 mm of extrusion<sup>7-9</sup>, as measured on magnetic resonance imaging. In our technique, any extrusion beyond the medial tibial rim is reduced and secured with use of a double-loaded 2.3-mm all-suture type of anchor.</p><p><strong>Alternatives: </strong>Alternatives include surgical procedures in which the root repair is performed with use of suture-anchor fixation<sup>10,11</sup> and the extrusion repair is performed with use of the transtibial suture pull-out method.</p><p><strong>Rationale: </strong>Root repair performed with the most common fixation techniques does not always reduce meniscal extrusion or restore meniscal function<sup>12,13</sup>. Consequently, several augmentation techniques have been reported to address meniscal extrusion<sup>3,14</sup>, including those that use arthroscopy to centralize the midbody of the meniscus over the rim of the tibial plateau. The rationale for this combined procedure is to restore the hoop-stress distribution and maintain meniscal function by repairing the extrusion of the meniscus. Addressing all intra-articular pathologies in a single stage is a challenging situation, and the sequence of the r
{"title":"Concomitant Medial Meniscal Root Repair with Extrusion Repair (Centralization Technique).","authors":"Silvampatti Ramaswamy Sundararajan, Rajagopalakrishnan Ramakanth, Terence D'Souza, Shanmuganathan Rajasekaran","doi":"10.2106/JBJS.ST.22.00008","DOIUrl":"10.2106/JBJS.ST.22.00008","url":null,"abstract":"<p><strong>Background: </strong>Meniscal extrusion is a phenomenon in which a degenerative posterior horn tear, radial tear, or root tear results in displacement of the body of the meniscus medial to the tibial rim. The paramount function of the meniscus is to provide load distribution across the knee joint. Meniscal extrusion will prevent the meniscus from properly fulfilling this function and eventually leads to progression of osteoarthritis<sup>1</sup>. Thus, root repair accompanied by arthroscopic meniscal extrusion repair (by a centralization technique) has been suggested for restoration of meniscal function<sup>2-5</sup>. There are various techniques to correct meniscal extrusion, including a dual-tunnel suture pull-out technique<sup>2</sup> (to address extrusion and root tear<sup>2</sup>), a knotless suture anchor<sup>4,6</sup> technique, and an all-inside suture anchor repair<sup>7</sup>. The indications for extrusion repair are not consistently reported in the literature, and the procedure is not always easy to perform. Currently, there is no consensus regarding the ideal technique. In the present article, we describe the steps for successful combined medial meniscal root repair with extrusion repair and centralization.</p><p><strong>Description: </strong>Place the patient in the supine position with the knee supported in 90° of flexion and the feet at the edge of the operating table with foot-positioner support. First, meniscal root repair is performed with use of the suture pull-out technique, utilizing a cinch suture configuration to hold the root in place, and the suture tapes are fixed over the anterior cortex of the tibia with a suture button. Next, the meniscal body is arthroscopically assessed for residual extrusion from the medial tibial rim. Extrusion repair is indicated in cases with >3 mm of extrusion<sup>7-9</sup>, as measured on magnetic resonance imaging. In our technique, any extrusion beyond the medial tibial rim is reduced and secured with use of a double-loaded 2.3-mm all-suture type of anchor.</p><p><strong>Alternatives: </strong>Alternatives include surgical procedures in which the root repair is performed with use of suture-anchor fixation<sup>10,11</sup> and the extrusion repair is performed with use of the transtibial suture pull-out method.</p><p><strong>Rationale: </strong>Root repair performed with the most common fixation techniques does not always reduce meniscal extrusion or restore meniscal function<sup>12,13</sup>. Consequently, several augmentation techniques have been reported to address meniscal extrusion<sup>3,14</sup>, including those that use arthroscopy to centralize the midbody of the meniscus over the rim of the tibial plateau. The rationale for this combined procedure is to restore the hoop-stress distribution and maintain meniscal function by repairing the extrusion of the meniscus. Addressing all intra-articular pathologies in a single stage is a challenging situation, and the sequence of the r","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21eCollection Date: 2023-07-01DOI: 10.2106/JBJS.ST.22.00023
Charles P Hannon, Matthew P Abdel
<p><strong>Background: </strong>As the number of primary total hip arthroplasty procedures performed each year continues to rise, so too do the number of complications, including periprosthetic femoral fracture<sup>1-9</sup>. Vancouver B2 and B3 periprosthetic femoral fractures are difficult to treat because they require the surgeon to simultaneously manage a femoral fracture and gain new implant fixation. Fluted tapered stems have advanced the treatment of periprosthetic femoral fractures by providing immediate axial and rotational implant fixation distal to the fracture<sup>10-18</sup>. Modular fluted tapered stems provide the added practical advantage of allowing length and anteversion adjustment after implantation of the distal fixation portion of the stem.</p><p><strong>Description: </strong>In this technique, a modified extended trochanteric osteotomy incorporating the fracture is utilized to gain access to the loose femoral implant and femoral diaphyseal canal. The femoral diaphyseal canal is then sequentially reamed in 1-mm increments. A fluted tapered stem with the appropriate length, diameter, and axial and rotational stability is inserted into the canal. A proximal body is then chosen that establishes the appropriate leg length, femoral offset, and version. The final proximal body is engaged into the fluted tapered stem. Finally, the fracture is fixed around the implant with a combination of cables or wires.</p><p><strong>Alternatives: </strong>Historically, implants such as extensively porous coated stems were utilized to treat Vancouver B2 or B<sub>3</sub> periprosthetic femoral fractures. Unfortunately, these implants were associated with high rates of failure and revision<sup>7,9</sup>.</p><p><strong>Rationale: </strong>The introduction of a fluted tapered stem provided a more reliable implant that achieves immediate axial and rotational stability. In addition, utilizing a fluted tapered stem allowed for a more soft-tissue-preserving approach to these complex injuries, in turn allowing the fracture to be reduced around the implant proximally with cerclage cables and or wires. Modular fluted tapered stems provide the additional advantage of allowing the surgeon to modify leg length, offset, and femoral version, independently of the fluted tapered stem. As a result of these unique advantages, these stems were introduced several years ago for the treatment of Vancouver B<sub>2</sub> or B<sub>3</sub> periprosthetic femoral fractures.</p><p><strong>Expected outcomes: </strong>Contemporary series have demonstrated that the use of a modular fluted tapered stem leads to improved implant survivorship and clinical outcomes with lower complication rates for Vancouver B2 and B<sub>3</sub> periprosthetic femoral fractures<sup>1,10-12,14-19</sup>.</p><p><strong>Important tips: </strong>Template both the fluted tapered stem and proximal body preoperatively. The proximal body should be templated at the ideal hip center of rotation that appropriate
{"title":"Revision Total Hip Arthroplasty with a Modular Fluted Tapered Stem for a Periprosthetic Femoral Fracture.","authors":"Charles P Hannon, Matthew P Abdel","doi":"10.2106/JBJS.ST.22.00023","DOIUrl":"10.2106/JBJS.ST.22.00023","url":null,"abstract":"<p><strong>Background: </strong>As the number of primary total hip arthroplasty procedures performed each year continues to rise, so too do the number of complications, including periprosthetic femoral fracture<sup>1-9</sup>. Vancouver B2 and B3 periprosthetic femoral fractures are difficult to treat because they require the surgeon to simultaneously manage a femoral fracture and gain new implant fixation. Fluted tapered stems have advanced the treatment of periprosthetic femoral fractures by providing immediate axial and rotational implant fixation distal to the fracture<sup>10-18</sup>. Modular fluted tapered stems provide the added practical advantage of allowing length and anteversion adjustment after implantation of the distal fixation portion of the stem.</p><p><strong>Description: </strong>In this technique, a modified extended trochanteric osteotomy incorporating the fracture is utilized to gain access to the loose femoral implant and femoral diaphyseal canal. The femoral diaphyseal canal is then sequentially reamed in 1-mm increments. A fluted tapered stem with the appropriate length, diameter, and axial and rotational stability is inserted into the canal. A proximal body is then chosen that establishes the appropriate leg length, femoral offset, and version. The final proximal body is engaged into the fluted tapered stem. Finally, the fracture is fixed around the implant with a combination of cables or wires.</p><p><strong>Alternatives: </strong>Historically, implants such as extensively porous coated stems were utilized to treat Vancouver B2 or B<sub>3</sub> periprosthetic femoral fractures. Unfortunately, these implants were associated with high rates of failure and revision<sup>7,9</sup>.</p><p><strong>Rationale: </strong>The introduction of a fluted tapered stem provided a more reliable implant that achieves immediate axial and rotational stability. In addition, utilizing a fluted tapered stem allowed for a more soft-tissue-preserving approach to these complex injuries, in turn allowing the fracture to be reduced around the implant proximally with cerclage cables and or wires. Modular fluted tapered stems provide the additional advantage of allowing the surgeon to modify leg length, offset, and femoral version, independently of the fluted tapered stem. As a result of these unique advantages, these stems were introduced several years ago for the treatment of Vancouver B<sub>2</sub> or B<sub>3</sub> periprosthetic femoral fractures.</p><p><strong>Expected outcomes: </strong>Contemporary series have demonstrated that the use of a modular fluted tapered stem leads to improved implant survivorship and clinical outcomes with lower complication rates for Vancouver B2 and B<sub>3</sub> periprosthetic femoral fractures<sup>1,10-12,14-19</sup>.</p><p><strong>Important tips: </strong>Template both the fluted tapered stem and proximal body preoperatively. The proximal body should be templated at the ideal hip center of rotation that appropriate","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810587/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67755198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21eCollection Date: 2023-07-01DOI: 10.2106/JBJS.ST.21.00003
Cody C Wyles, Charles P Hannon, Anthony Viste, Kevin I Perry, Robert T Trousdale, Daniel J Berry, Matthew P Abdel
<p><strong>Background: </strong>Removal of well-fixed femoral components during revision total hip arthroplasty (THA) can be difficult and time-consuming<sup>1</sup>, leading to numerous complications, such as femoral perforation, bone loss, and fracture. Extended trochanteric osteotomies (ETOs), which provide wide exposure and direct access to the femoral canal under controlled conditions, have become a popular method to circumvent these challenges. ETOs were popularized by Wagner (i.e., the anterior-based osteotomy), and later modified by Paprosky (i.e., the lateral-based osteotomy)<sup>2</sup>.</p><p><strong>Description: </strong>The decision to utilize the laterally based Paprosky ETO versus the anteriorly based Wagner ETO is primarily based on surgeon preference, the location and type of in situ implants, and the osseous anatomy. Typically, a laterally based ETO is most facile in conjunction with a posterior approach and an anteriorly based ETO is most commonly paired with a lateral or anterolateral approach. Attention must be paid to maintaining vascularity to the osteotomy fragment, including minimizing stripping of the vastus lateralis from the osteotomy fragment and maintaining abductor attachments to the osteotomy fragment. When utilizing a laterally based ETO, the posterior border of the vastus lateralis must be carefully elevated to provide exposure for performance of the osteotomy. When an anteriorly based osteotomy is performed, the surgeon may instead extend the abductor tenotomy proximally with use of a longitudinal split of the vastus lateralis distally, which helps to keep the anterior and posterior sleeves of soft tissue in continuity. In either approach, dissection of the vastus lateralis involves managing several large vascular perforators. We prefer performing careful blunt dissection to identify the perforators and prophylactically controlling them, with ligation of large vessels and electrocautery of smaller vessels. Vascular clips are also available in case difficult-to-control bleeding is encountered. In general, an oscillating saw (with preference for a thin blade) is utilized to complete the posterior longitudinal limb of the ETO, extending approximately 12 to 16 cm distally from the tip of the greater trochanter. Although a 12 to 16-cm zone is required to maintain maximum vascularity to the osteotomized fragment, the osteotomy length must ultimately be determined by (1) the length of the femoral component to be removed; (2) the presence of distal bone ingrowth, ongrowth, or cement; and (3) the presence of distal hardware or stemmed knee components. A smaller oscillating saw is then utilized to complete the transverse limb at the previously identified distal extent. A high-speed pencil-tip burr is utilized to complete the corners of the osteotomy in a rounded configuration, and a combination of saws and pencil-tip burrs is utilized to create partial proximal and distal anterior longitudinal limbs of the osteotomy to th
背景:在翻修全髋关节置换术(THA)过程中,取出固定良好的股骨组件既困难又耗时1,会导致股骨穿孔、骨质流失和骨折等多种并发症。扩展转子截骨术(ETO)可在可控条件下提供大范围暴露并直接进入股骨管,已成为规避这些难题的常用方法。ETO由瓦格纳(即基于前方的截骨术)推广,后经帕普洛斯基(即基于侧面的截骨术)改进2:2.说明: 决定使用侧位 Paprosky ETO 还是前位 Wagner ETO 主要取决于外科医生的偏好、原位种植体的位置和类型以及骨解剖结构。通常情况下,侧方 ETO 与后方入路配合使用最为方便,而前方 ETO 通常与侧方或前外侧入路配合使用。必须注意保持截骨片段的血管通畅,包括尽量减少从截骨片段剥离侧阔肌,并保持外展肌附着于截骨片段。在使用侧向 ETO 时,必须小心抬高侧阔肌后缘,以便在进行截骨时暴露出来。在进行基于前方的截骨术时,外科医生可以将内收肌腱膜切开术向近端延伸,并在远端对阔筋膜进行纵向分割,这有助于保持前后软组织套筒的连续性。无论采用哪种方法,对阔筋膜侧的解剖都需要处理几条大的血管穿孔器。我们倾向于进行仔细的钝性剥离以识别穿孔器,并对其进行预防性控制,结扎大血管,电烧小血管。如果遇到难以控制的出血,也可以使用血管夹。一般情况下,使用摆动锯(优先选择薄锯片)完成 ETO 后纵缘,从大转子顶端向远端延伸约 12 至 16 厘米。虽然需要12至16厘米的区域来保持截骨片段最大程度的血管通畅,但截骨长度最终必须由以下因素决定:(1) 需要移除的股骨组件的长度;(2) 是否存在远端骨质增生、骨赘或骨水泥;(3) 是否存在远端硬件或带柄膝关节组件。然后使用较小的摆动锯在先前确定的远端范围完成横向肢体的切除。使用高速笔尖锉完成圆角截骨,并在软组织附着物允许的范围内,将锯和笔尖锉组合使用,形成截骨的部分近端和远端前纵向肢体。在可控的情况下,可通过连续钻孔进一步削弱前纵肢。然后在后纵缘放置 2 到 4 个宽直的截骨器,对前纵缘进行控制性骨折。用轻柔、稳定的力量将这些截骨器小心翼翼地向前方撬动。ETO 完成后,取出髓内假体、硬件和骨水泥;根据需要处理髋臼;如果合适,植入最终股骨柄。截骨手术完成后,必须轻柔地牵拉截骨碎片,注意避免骨折并保持血管通畅。为此,应避免对截骨片段的骨内膜进行清创,包括清除骨水泥,直到手术结束,准备关闭截骨时再进行清创。我们首选的闭合方法是在截骨远端1厘米处放置1根预防性钢索,沿截骨的骺段放置1到2根钢索,在小转子上方放置1根Luque钢丝。我们在小转子上方的位置特别选择了 Luque 钢丝,因为它位于有效的关节间隙中;不过,在小转子远端使用 Luque 钢丝也是可以接受的。在极少数情况下,可以使用支撑异体移植或锁定板来加固截骨,或用于弥合假体间应力嵴。通常避免使用转子植入物,因为使用这种闭合技术时临床相关的转子移位率较低,而且使用转子爪或钢板时出现症状的植入物比率较高:替代方法:经股骨截骨术是一种暴露程度类似的截骨术。此外,各种非伸展转子截骨术,如转子滑动截骨术,可提供更有限的暴露。
{"title":"Extended Trochanteric Osteotomy in Revision Total Hip Arthroplasty.","authors":"Cody C Wyles, Charles P Hannon, Anthony Viste, Kevin I Perry, Robert T Trousdale, Daniel J Berry, Matthew P Abdel","doi":"10.2106/JBJS.ST.21.00003","DOIUrl":"10.2106/JBJS.ST.21.00003","url":null,"abstract":"<p><strong>Background: </strong>Removal of well-fixed femoral components during revision total hip arthroplasty (THA) can be difficult and time-consuming<sup>1</sup>, leading to numerous complications, such as femoral perforation, bone loss, and fracture. Extended trochanteric osteotomies (ETOs), which provide wide exposure and direct access to the femoral canal under controlled conditions, have become a popular method to circumvent these challenges. ETOs were popularized by Wagner (i.e., the anterior-based osteotomy), and later modified by Paprosky (i.e., the lateral-based osteotomy)<sup>2</sup>.</p><p><strong>Description: </strong>The decision to utilize the laterally based Paprosky ETO versus the anteriorly based Wagner ETO is primarily based on surgeon preference, the location and type of in situ implants, and the osseous anatomy. Typically, a laterally based ETO is most facile in conjunction with a posterior approach and an anteriorly based ETO is most commonly paired with a lateral or anterolateral approach. Attention must be paid to maintaining vascularity to the osteotomy fragment, including minimizing stripping of the vastus lateralis from the osteotomy fragment and maintaining abductor attachments to the osteotomy fragment. When utilizing a laterally based ETO, the posterior border of the vastus lateralis must be carefully elevated to provide exposure for performance of the osteotomy. When an anteriorly based osteotomy is performed, the surgeon may instead extend the abductor tenotomy proximally with use of a longitudinal split of the vastus lateralis distally, which helps to keep the anterior and posterior sleeves of soft tissue in continuity. In either approach, dissection of the vastus lateralis involves managing several large vascular perforators. We prefer performing careful blunt dissection to identify the perforators and prophylactically controlling them, with ligation of large vessels and electrocautery of smaller vessels. Vascular clips are also available in case difficult-to-control bleeding is encountered. In general, an oscillating saw (with preference for a thin blade) is utilized to complete the posterior longitudinal limb of the ETO, extending approximately 12 to 16 cm distally from the tip of the greater trochanter. Although a 12 to 16-cm zone is required to maintain maximum vascularity to the osteotomized fragment, the osteotomy length must ultimately be determined by (1) the length of the femoral component to be removed; (2) the presence of distal bone ingrowth, ongrowth, or cement; and (3) the presence of distal hardware or stemmed knee components. A smaller oscillating saw is then utilized to complete the transverse limb at the previously identified distal extent. A high-speed pencil-tip burr is utilized to complete the corners of the osteotomy in a rounded configuration, and a combination of saws and pencil-tip burrs is utilized to create partial proximal and distal anterior longitudinal limbs of the osteotomy to th","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810589/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21eCollection Date: 2023-07-01DOI: 10.2106/JBJS.ST.22.00035
Chase T Nelson, Tyler J Thorne, Thomas F Higgins, David L Rothberg, Justin M Haller, Lucas S Marchand
<p><strong>Background: </strong>This technique utilizes a full-thickness flap to provide a posterior approach to the scapula for open reduction and internal fracture fixation. The present video article outlines the Judet approach along with an incision modification tip for the surgeon's consideration.</p><p><strong>Description: </strong>Prior to making the incision, perform preoperative planning, patient and C-arm positioning, and identification of the primary fragments of the fracture that necessitate fixation on imaging. The Judet incision is made, and the full-thickness flap is retracted laterally (also described as a "boomerang-shaped" incision, allowing for the flap to be reflected medially). Next, detach and reflect the deltoid off the scapular spine superolaterally to reveal the internervous plane between the infraspinatus and teres minor. Utilize this interval to access the fracture sites while making sure to reflect the infraspinatus cranially, carefully minding the suprascapular neurovascular bundle, and the teres minor inferiorly, protecting the axillary nerve. A longitudinal arthrotomy may then be created parallel to the posterior border of the glenoid, with careful attention paid toward protecting the labrum from iatrogenic injury. The arthrotomy will allow for intra-articular evaluation of the reduction if needed. Primary fractures are then reduced. Reduction is confirmed with use of fluoroscopy, and fixation is applied to maintain the reduction.</p><p><strong>Alternatives: </strong>Most scapular fractures do well with nonoperative treatment, and this has been well documented in the literature. Open reduction and internal fixation has been shown to offer good-to-excellent clinical outcomes with minimal risk of complications in patients with traumatic scapular fractures that necessitate operative treatment<sup>1</sup>. In certain fractures of the glenoid fossa, operative treatment is necessary to restore normal anatomy, provide stability to the glenohumeral joint, and facilitate functional rehabilitation. Operative treatment is typically reserved for injuries with intra-articular involvement that results in joint incongruity or joint instability<sup>2,3</sup>. When operative treatment is indicated, an open posterior approach is utilized for some fractures. The posterior Judet approach is the best-known operative technique for such fractures, while other modifications of the Judet technique have also been described in the literature<sup>3-5</sup>.</p><p><strong>Rationale: </strong>Reports state that scapular body or neck and glenoid fossa fractures account for up to 80% of scapular fractures<sup>6</sup>. Open reduction and internal fixation of the scapula is an invasive procedure, requiring large incisions and manipulation of soft tissues to expose the various possible fracture sites on the scapula. Thus, numerus surgical techniques have been described that allow surgeons to best tailor treatment to their patients on a case-by-case ba
{"title":"Posterior Approach for Open Reduction and Internal Fixation for Scapular Fractures.","authors":"Chase T Nelson, Tyler J Thorne, Thomas F Higgins, David L Rothberg, Justin M Haller, Lucas S Marchand","doi":"10.2106/JBJS.ST.22.00035","DOIUrl":"10.2106/JBJS.ST.22.00035","url":null,"abstract":"<p><strong>Background: </strong>This technique utilizes a full-thickness flap to provide a posterior approach to the scapula for open reduction and internal fracture fixation. The present video article outlines the Judet approach along with an incision modification tip for the surgeon's consideration.</p><p><strong>Description: </strong>Prior to making the incision, perform preoperative planning, patient and C-arm positioning, and identification of the primary fragments of the fracture that necessitate fixation on imaging. The Judet incision is made, and the full-thickness flap is retracted laterally (also described as a \"boomerang-shaped\" incision, allowing for the flap to be reflected medially). Next, detach and reflect the deltoid off the scapular spine superolaterally to reveal the internervous plane between the infraspinatus and teres minor. Utilize this interval to access the fracture sites while making sure to reflect the infraspinatus cranially, carefully minding the suprascapular neurovascular bundle, and the teres minor inferiorly, protecting the axillary nerve. A longitudinal arthrotomy may then be created parallel to the posterior border of the glenoid, with careful attention paid toward protecting the labrum from iatrogenic injury. The arthrotomy will allow for intra-articular evaluation of the reduction if needed. Primary fractures are then reduced. Reduction is confirmed with use of fluoroscopy, and fixation is applied to maintain the reduction.</p><p><strong>Alternatives: </strong>Most scapular fractures do well with nonoperative treatment, and this has been well documented in the literature. Open reduction and internal fixation has been shown to offer good-to-excellent clinical outcomes with minimal risk of complications in patients with traumatic scapular fractures that necessitate operative treatment<sup>1</sup>. In certain fractures of the glenoid fossa, operative treatment is necessary to restore normal anatomy, provide stability to the glenohumeral joint, and facilitate functional rehabilitation. Operative treatment is typically reserved for injuries with intra-articular involvement that results in joint incongruity or joint instability<sup>2,3</sup>. When operative treatment is indicated, an open posterior approach is utilized for some fractures. The posterior Judet approach is the best-known operative technique for such fractures, while other modifications of the Judet technique have also been described in the literature<sup>3-5</sup>.</p><p><strong>Rationale: </strong>Reports state that scapular body or neck and glenoid fossa fractures account for up to 80% of scapular fractures<sup>6</sup>. Open reduction and internal fixation of the scapula is an invasive procedure, requiring large incisions and manipulation of soft tissues to expose the various possible fracture sites on the scapula. Thus, numerus surgical techniques have been described that allow surgeons to best tailor treatment to their patients on a case-by-case ba","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67755148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-27eCollection Date: 2023-04-01DOI: 10.2106/JBJS.ST.22.00020
Daniel K Park, Chong Weng, Philip Zakko, Dae-Jung Choi
<p><strong>Background: </strong>Unilateral biportal endoscopy (UBE) is a novel minimally invasive technique for the treatment of lumbar spinal stenosis and lumbar disc herniations. Uniportal endoscopy was utilized prior to the advent of UBE and has been considered the workhorse of endoscopic spine surgery (ESS) for lumbar discectomy and decompressive laminectomy. However, there are theoretical advantages to UBE compared with traditional uniportal endoscopy, including that the procedure utilizes typical spinal equipment that should be readily available, requires less capital cost and optical instrumentation, and provides greater operative flexibility as a result of utilizing both a working and a viewing portal<sup>7,8</sup>.</p><p><strong>Description: </strong>A 0-degree arthroscope is typically utilized for discectomy and lumbar laminectomies. The use of a radiofrequency ablator is critical to help coagulate osseous and muscle bleeders. For irrigation, gravity or a low-pressure pump, typically <40 mm Hg, can be utilized<sup>9,10</sup>. Further details regarding irrigation pressure are provided in "Important Tips." The use of a standard powered burr is typical to help osseous decompression, and Kerrison ronguers, pituitaries, osteotomes, and probes utilized in open or tubular cases suffice. Two incisions are made approximately 1 cm lateral to the midline. If working from the left side for a right-handed surgeon, the working portal is typically made at the lower laminar margin of the target level. The camera portal is then made typically 2 to 3 cm cephalad. A lateral radiograph is then utilized to confirm the portal placements. From the right side, the working portal is cephalad and the camera portal is caudal. Because of the switch, the portals may be shifted more distally.The first step is creating a working space because there is no true joint space in the spine. With use of radiofrequency ablation, a working space is created in the interlaminar space. Next, with use of a powered burr or a chiseled osteotomy, the base of the cephalad spinous process is thinned until the insertion of the ligamentum flavum is found. Next, the ipsilateral and contralateral laminae are thinned in a similar fashion. Once the osseous elements are removed, the ligamentum flavum is removed en bloc. The traversing nerve roots are checked under direct high-magnification visualization to ensure that they are decompressed. If a discectomy is necessary, standard nerve-root retractors can be utilized to retract the neural elements. With use of a blunt-tip elevator, the anular defect can be incised and the herniated disc can be removed under direct high-power visualization. In addition, a small curet can be utilized to create a defect in the weakened anulus or membrane covering the extruded disc material in order to help deliver the herniated disc material. Epidural veins are coagulated typically with use of a fine-point bipolar radiofrequency device.</p><p><strong>Alternative
{"title":"Unilateral Biportal Endoscopy for Lumbar Spinal Stenosis and Lumbar Disc Herniation.","authors":"Daniel K Park, Chong Weng, Philip Zakko, Dae-Jung Choi","doi":"10.2106/JBJS.ST.22.00020","DOIUrl":"10.2106/JBJS.ST.22.00020","url":null,"abstract":"<p><strong>Background: </strong>Unilateral biportal endoscopy (UBE) is a novel minimally invasive technique for the treatment of lumbar spinal stenosis and lumbar disc herniations. Uniportal endoscopy was utilized prior to the advent of UBE and has been considered the workhorse of endoscopic spine surgery (ESS) for lumbar discectomy and decompressive laminectomy. However, there are theoretical advantages to UBE compared with traditional uniportal endoscopy, including that the procedure utilizes typical spinal equipment that should be readily available, requires less capital cost and optical instrumentation, and provides greater operative flexibility as a result of utilizing both a working and a viewing portal<sup>7,8</sup>.</p><p><strong>Description: </strong>A 0-degree arthroscope is typically utilized for discectomy and lumbar laminectomies. The use of a radiofrequency ablator is critical to help coagulate osseous and muscle bleeders. For irrigation, gravity or a low-pressure pump, typically <40 mm Hg, can be utilized<sup>9,10</sup>. Further details regarding irrigation pressure are provided in \"Important Tips.\" The use of a standard powered burr is typical to help osseous decompression, and Kerrison ronguers, pituitaries, osteotomes, and probes utilized in open or tubular cases suffice. Two incisions are made approximately 1 cm lateral to the midline. If working from the left side for a right-handed surgeon, the working portal is typically made at the lower laminar margin of the target level. The camera portal is then made typically 2 to 3 cm cephalad. A lateral radiograph is then utilized to confirm the portal placements. From the right side, the working portal is cephalad and the camera portal is caudal. Because of the switch, the portals may be shifted more distally.The first step is creating a working space because there is no true joint space in the spine. With use of radiofrequency ablation, a working space is created in the interlaminar space. Next, with use of a powered burr or a chiseled osteotomy, the base of the cephalad spinous process is thinned until the insertion of the ligamentum flavum is found. Next, the ipsilateral and contralateral laminae are thinned in a similar fashion. Once the osseous elements are removed, the ligamentum flavum is removed en bloc. The traversing nerve roots are checked under direct high-magnification visualization to ensure that they are decompressed. If a discectomy is necessary, standard nerve-root retractors can be utilized to retract the neural elements. With use of a blunt-tip elevator, the anular defect can be incised and the herniated disc can be removed under direct high-power visualization. In addition, a small curet can be utilized to create a defect in the weakened anulus or membrane covering the extruded disc material in order to help deliver the herniated disc material. Epidural veins are coagulated typically with use of a fine-point bipolar radiofrequency device.</p><p><strong>Alternative","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-20eCollection Date: 2023-04-01DOI: 10.2106/JBJS.ST.23.00037
Edward Y Cheng
{"title":"<i>JBJS EST</i> Editor's Choice Award Winners for 2022.","authors":"Edward Y Cheng","doi":"10.2106/JBJS.ST.23.00037","DOIUrl":"10.2106/JBJS.ST.23.00037","url":null,"abstract":"","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24eCollection Date: 2023-04-01DOI: 10.2106/JBJS.ST.22.00010
Scott D Martin, Christopher T Eberlin, Michael P Kucharik, Nathan J Cherian
<p><strong>Background: </strong>During hip arthroscopy, managing concomitant cartilage damage and chondrolabral junction breakdown remains an ongoing challenge for orthopaedic surgeons, as previous studies have associated such lesions with inferior postoperative outcomes<sup>1-7</sup>. Although higher-level studies are needed to fully elucidate the benefits, recent literature has provided supporting preliminary evidence for the utilization of bone marrow aspirate concentrate (BMAC) in patients with moderate cartilage damage and full-thickness chondral flaps undergoing acetabular labral repair<sup>7,8</sup>. Thus, as the incorporation of orthobiologics continues to advance, there is a clinical demand for an efficient and reliable BMAC-harvesting technique that utilizes an anatomical location with a substantial concentration of connective tissue progenitor (CTP) cells, while avoiding donor-site morbidity and minimizing additional operative time. Thus, we present a safe and technically feasible approach for harvesting bone marrow aspirate from the body of the ilium, followed by centrifugation and application during hip arthroscopy.</p><p><strong>Description: </strong>After induction of anesthesia and appropriate patient positioning, a quadrilateral arrangement of arthroscopic portals is established to perform puncture capsulotomy<sup>9</sup>. Upon arthroscopic visualization of cartilage/chondrolabral junction injury, 52 mL of whole venous blood is promptly obtained from an intravenous access site and combined with 8 mL of anticoagulant citrate dextrose solution A (ACD-A). The mixture is centrifuged to yield approximately 2 to 3 mL of platelet-rich plasma (PRP) and 17 to 18 mL of platelet-poor plasma (PPP). Then, approaching along the coronal plane and aiming toward the anterior-superior iliac spine under fluoroscopic guidance, a heparin-rinsed Jamshidi bone marrow biopsy needle is driven through the lateral cortex of the ilium just proximal to the sourcil. Under a relative negative-pressure vacuum, bone marrow is aspirated into 3 separate heparin-rinsed 50 mL syringes, each containing 5 mL of ACD-A. Slow and steady negative pressure should be used to pull back on the syringe plunger to aspirate a total volume of 40 mL into each syringe. To avoid pelvic cavity compromise and minimize the risk of mobilizing marrow-space contents, care should be taken to ensure that no forward force or positive pressure is applied during the aspiration process. A total combined bone marrow aspirate/ACD-A mixture of approximately 120 mL is consistently harvested and subsequently centrifuged to yield roughly 4 to 6 mL of BMAC. The final mixture containing BMAC, PRP, and PPP is combined with thrombin to generate a megaclot, which is then applied to the central compartment of the hip.</p><p><strong>Alternatives: </strong>Currently, strategies to address acetabular cartilage lesions may include microfracture, autologous chondrocyte implantation, matrix-induced autologous ch
{"title":"Harvest and Application of Bone Marrow Aspirate Concentrate to Address Acetabular Chondral Damage During Hip Arthroscopy.","authors":"Scott D Martin, Christopher T Eberlin, Michael P Kucharik, Nathan J Cherian","doi":"10.2106/JBJS.ST.22.00010","DOIUrl":"10.2106/JBJS.ST.22.00010","url":null,"abstract":"<p><strong>Background: </strong>During hip arthroscopy, managing concomitant cartilage damage and chondrolabral junction breakdown remains an ongoing challenge for orthopaedic surgeons, as previous studies have associated such lesions with inferior postoperative outcomes<sup>1-7</sup>. Although higher-level studies are needed to fully elucidate the benefits, recent literature has provided supporting preliminary evidence for the utilization of bone marrow aspirate concentrate (BMAC) in patients with moderate cartilage damage and full-thickness chondral flaps undergoing acetabular labral repair<sup>7,8</sup>. Thus, as the incorporation of orthobiologics continues to advance, there is a clinical demand for an efficient and reliable BMAC-harvesting technique that utilizes an anatomical location with a substantial concentration of connective tissue progenitor (CTP) cells, while avoiding donor-site morbidity and minimizing additional operative time. Thus, we present a safe and technically feasible approach for harvesting bone marrow aspirate from the body of the ilium, followed by centrifugation and application during hip arthroscopy.</p><p><strong>Description: </strong>After induction of anesthesia and appropriate patient positioning, a quadrilateral arrangement of arthroscopic portals is established to perform puncture capsulotomy<sup>9</sup>. Upon arthroscopic visualization of cartilage/chondrolabral junction injury, 52 mL of whole venous blood is promptly obtained from an intravenous access site and combined with 8 mL of anticoagulant citrate dextrose solution A (ACD-A). The mixture is centrifuged to yield approximately 2 to 3 mL of platelet-rich plasma (PRP) and 17 to 18 mL of platelet-poor plasma (PPP). Then, approaching along the coronal plane and aiming toward the anterior-superior iliac spine under fluoroscopic guidance, a heparin-rinsed Jamshidi bone marrow biopsy needle is driven through the lateral cortex of the ilium just proximal to the sourcil. Under a relative negative-pressure vacuum, bone marrow is aspirated into 3 separate heparin-rinsed 50 mL syringes, each containing 5 mL of ACD-A. Slow and steady negative pressure should be used to pull back on the syringe plunger to aspirate a total volume of 40 mL into each syringe. To avoid pelvic cavity compromise and minimize the risk of mobilizing marrow-space contents, care should be taken to ensure that no forward force or positive pressure is applied during the aspiration process. A total combined bone marrow aspirate/ACD-A mixture of approximately 120 mL is consistently harvested and subsequently centrifuged to yield roughly 4 to 6 mL of BMAC. The final mixture containing BMAC, PRP, and PPP is combined with thrombin to generate a megaclot, which is then applied to the central compartment of the hip.</p><p><strong>Alternatives: </strong>Currently, strategies to address acetabular cartilage lesions may include microfracture, autologous chondrocyte implantation, matrix-induced autologous ch","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67754752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}