The present study aims to quantify the flow field, flow velocity, and heat transfer features over a horizontal flat plate under the influence of an applied magnetic field, with a particular emphasis on low Prandtl number fluids. Nonlinear partial differential expressions can be incorporated into the ordinary differential framework with the use of appropriate transformations. This research utilizes the variational iteration method (VIM) to approximate solutions for the system of nonlinear differential equations that define the problem. The objective is to demonstrate superior flexibility and broader application of the VIM in addressing heat transfer issues, compared to alternative approaches. The results obtained from the VIM are compared with numerical solutions, revealing a significant level of accuracy in the approximation. The numerical findings strongly suggest that the VIM is effective in providing precise numerical solutions for nonlinear differential equations. The analysis includes an examination of the flow field, velocity, and temperature distribution across various parameters. The study found that improving temperature patterns, velocity distribution, and flow dynamics were all positively impacted by increasing the Prandtl numbers. As a result, this leads to the thickness of the boundary layer to decrease and improves heat transfer at the moving surface. Thus, the convection process becomes more efficient. When the strength of the magnetic field is increased, the velocity of the fluid decreases. This observation aligns with expectations since the magnetic field hampers the natural flow of convection. Notably, the convection process can be precisely controlled by carefully applying magnetic force.
本研究旨在量化外加磁场影响下水平平板上的流场、流速和传热特征,尤其侧重于低普朗特数流体。非线性偏微分表达式可以通过适当的变换纳入常微分框架。本研究利用变分迭代法(VIM)来近似求解定义问题的非线性微分方程系统。与其他方法相比,其目的是证明 VIM 在解决传热问题方面具有更高的灵活性和更广泛的应用。将 VIM 得出的结果与数值解进行了比较,结果表明近似解的精确度非常高。数值结果有力地表明,VIM 可以有效地为非线性微分方程提供精确的数值解。分析包括对不同参数下的流场、速度和温度分布的检查。研究发现,增加普朗特数对改善温度模式、速度分布和流动动力学都有积极影响。因此,这会导致边界层厚度减小,并改善运动表面的热传递。因此,对流过程变得更加有效。当磁场强度增加时,流体的速度会降低。这一观察结果与预期一致,因为磁场会阻碍对流的自然流动。值得注意的是,对流过程可以通过小心施加磁力来精确控制。
{"title":"Analytical solution to boundary layer flow and convective heat transfer for low Prandtl number fluids under the magnetic field effect over a flat plate","authors":"Ajay Kumar Agrawal, Yogesh Gupta","doi":"10.1002/htj.23072","DOIUrl":"10.1002/htj.23072","url":null,"abstract":"<p>The present study aims to quantify the flow field, flow velocity, and heat transfer features over a horizontal flat plate under the influence of an applied magnetic field, with a particular emphasis on low Prandtl number fluids. Nonlinear partial differential expressions can be incorporated into the ordinary differential framework with the use of appropriate transformations. This research utilizes the variational iteration method (VIM) to approximate solutions for the system of nonlinear differential equations that define the problem. The objective is to demonstrate superior flexibility and broader application of the VIM in addressing heat transfer issues, compared to alternative approaches. The results obtained from the VIM are compared with numerical solutions, revealing a significant level of accuracy in the approximation. The numerical findings strongly suggest that the VIM is effective in providing precise numerical solutions for nonlinear differential equations. The analysis includes an examination of the flow field, velocity, and temperature distribution across various parameters. The study found that improving temperature patterns, velocity distribution, and flow dynamics were all positively impacted by increasing the Prandtl numbers. As a result, this leads to the thickness of the boundary layer to decrease and improves heat transfer at the moving surface. Thus, the convection process becomes more efficient. When the strength of the magnetic field is increased, the velocity of the fluid decreases. This observation aligns with expectations since the magnetic field hampers the natural flow of convection. Notably, the convection process can be precisely controlled by carefully applying magnetic force.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"3054-3071"},"PeriodicalIF":2.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current investigation focuses on examining viscous corrections for viscous potential flow (VCVPF) analysis concerning the Rayleigh–Taylor instability occurring at the interface of a Rivlin–Ericksen (R–E) viscoelastic fluid and a viscous fluid during the transfer of heat and mass between phases. The R–E model is a fundamental framework in the study of viscoelastic fluids, providing insights into their complex rheological behavior. It characterizes the material's response to both deformation and flow, offering valuable predictions for various industrial and biological applications. Within the framework of viscous potential flow (VPF) theory, viscosity is exclusively accounted for in the normal stress balance equation, disregarding the influence of shearing stress entirely. This study introduces a viscous pressure term into the normal stress balance equation alongside the irrotational pressure, presuming that this addition will improve the discontinuity of tangential stresses at the fluid interface. Through derivation of a dispersion relationship and subsequent theoretical and numerical stability analyses, the stability of the interface is investigated across various physical parameters. Multiple plots are generated using the dispersion relation, and a comparative analysis between VPF and VCVPF is conducted to establish improved stability criteria. The investigation highlights that the combined impact of heat/mass transport and shearing stress serves to delay the instability of the interface.
{"title":"Viscous correction to the potential flow analysis of Rayleigh–Taylor instability in a Rivlin–Ericksen viscoelastic fluid layer with heat and mass transfer","authors":"Mukesh Kumar Awasthi, Atul Kumar Shukla, Ashwani Kumar, Dhananjay Yadav, Nitesh Dutt","doi":"10.1002/htj.23076","DOIUrl":"10.1002/htj.23076","url":null,"abstract":"<p>The current investigation focuses on examining viscous corrections for viscous potential flow (VCVPF) analysis concerning the Rayleigh–Taylor instability occurring at the interface of a Rivlin–Ericksen (R–E) viscoelastic fluid and a viscous fluid during the transfer of heat and mass between phases. The R–E model is a fundamental framework in the study of viscoelastic fluids, providing insights into their complex rheological behavior. It characterizes the material's response to both deformation and flow, offering valuable predictions for various industrial and biological applications. Within the framework of viscous potential flow (VPF) theory, viscosity is exclusively accounted for in the normal stress balance equation, disregarding the influence of shearing stress entirely. This study introduces a viscous pressure term into the normal stress balance equation alongside the irrotational pressure, presuming that this addition will improve the discontinuity of tangential stresses at the fluid interface. Through derivation of a dispersion relationship and subsequent theoretical and numerical stability analyses, the stability of the interface is investigated across various physical parameters. Multiple plots are generated using the dispersion relation, and a comparative analysis between VPF and VCVPF is conducted to establish improved stability criteria. The investigation highlights that the combined impact of heat/mass transport and shearing stress serves to delay the instability of the interface.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"3072-3088"},"PeriodicalIF":2.8,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohtasim Saib Nahin, Md Sameem Ul Qaum, Asif Shorforaj Chowdhury, Tasnimul Islam Siam, Fahim Tanfeez Mahmood, Mohammad Nasim Hasan
This study explores the effectiveness of periodically placed rotating blades in enhancing heat transfer in a channel. The channel consists of a cold top plate moving at a constant speed and a fixed hot plate at the bottom. Thin rotating blades are placed periodically along the channel's centerline, with the spacing between their axes equal to the channel's height. This paper analyzes a transient, two-dimensional, laminar flow problem using energy, momentum, and continuity equations. To address the challenges posed by moving blades, the Galerkin finite element method is implemented within an arbitrary Lagrangian–Eulerian framework, employing a triangular mesh discretization scheme. This study comprehensively explores thermal and hydrodynamic characteristics, including overall heat transfer, thermal frequency, and power consumption of the rotating blade for heat transfer in mixed convection scenarios with Richardson numbers (Ri) ranging from 0.1 to 10 at varying rotational frequency of the blade. Outcomes demonstrate that the inclusion of a rotating blade increases heat transfer up to 50% at lower Ri, after which the impact of the rotating blade diminishes and heat transfer reduces up to 20% at higher Ri. In addition, heat transfer enhances with increasing blade frequency up to Ri = 6.5, beyond which the effect of the frequency overturns. Examining thermal and hydrodynamic characteristics reveals that the blade achieves optimal performance when operating at f = 1 and Ri = 3. The study's insights into mixed convection heat transfer offer versatile applications, benefiting industries and equipment such as electronic cooling, chemical reactors, food processing, material fabrication, solar collectors, and nuclear reactor systems. Moreover, the findings are instrumental in the thermal ventilation of buildings and the development of micro-electromechanical systems.
本研究探讨了周期性放置的旋转叶片在增强通道传热方面的效果。通道由匀速运动的冷顶板和底部固定的热板组成。沿通道中心线周期性地放置薄旋转叶片,叶片轴线之间的间距等于通道高度。本文使用能量、动量和连续性方程分析了瞬态二维层流问题。为了应对移动叶片带来的挑战,本文在任意拉格朗日-欧勒框架内采用了 Galerkin 有限元方法,并采用了三角网格离散方案。本研究全面探讨了热学和流体力学特性,包括混合对流情况下的整体热传递、热频率和旋转叶片的热能消耗,其中理查德森数(Ri)从 0.1 到 10 不等,叶片的旋转频率各不相同。结果表明,在 Ri 较低时,加入旋转叶片最多可增加 50%的传热量,之后旋转叶片的影响逐渐减弱,在 Ri 较高时,传热量最多可减少 20%。此外,在 Ri = 6.5 之前,传热会随着叶片频率的增加而增强,超过 Ri = 6.5 后,频率的影响就会逆转。对热和流体动力学特性的研究表明,叶片在 f = 1 和 Ri = 3 条件下运行时性能最佳。这项研究对混合对流传热的深入研究提供了广泛的应用,使电子冷却、化学反应器、食品加工、材料制造、太阳能集热器和核反应堆系统等行业和设备受益匪浅。此外,研究结果还有助于建筑物的热通风和微型机电系统的开发。
{"title":"Mixed convection characteristics in a long horizontal lid-driven channel with periodically distributed local flow modulators","authors":"Mohtasim Saib Nahin, Md Sameem Ul Qaum, Asif Shorforaj Chowdhury, Tasnimul Islam Siam, Fahim Tanfeez Mahmood, Mohammad Nasim Hasan","doi":"10.1002/htj.23071","DOIUrl":"10.1002/htj.23071","url":null,"abstract":"<p>This study explores the effectiveness of periodically placed rotating blades in enhancing heat transfer in a channel. The channel consists of a cold top plate moving at a constant speed and a fixed hot plate at the bottom. Thin rotating blades are placed periodically along the channel's centerline, with the spacing between their axes equal to the channel's height. This paper analyzes a transient, two-dimensional, laminar flow problem using energy, momentum, and continuity equations. To address the challenges posed by moving blades, the Galerkin finite element method is implemented within an arbitrary Lagrangian–Eulerian framework, employing a triangular mesh discretization scheme. This study comprehensively explores thermal and hydrodynamic characteristics, including overall heat transfer, thermal frequency, and power consumption of the rotating blade for heat transfer in mixed convection scenarios with Richardson numbers (<i>Ri</i>) ranging from 0.1 to 10 at varying rotational frequency of the blade. Outcomes demonstrate that the inclusion of a rotating blade increases heat transfer up to 50% at lower <i>Ri</i>, after which the impact of the rotating blade diminishes and heat transfer reduces up to 20% at higher <i>Ri</i>. In addition, heat transfer enhances with increasing blade frequency up to <i>Ri</i> = 6.5, beyond which the effect of the frequency overturns. Examining thermal and hydrodynamic characteristics reveals that the blade achieves optimal performance when operating at <i>f</i> = 1 and <i>Ri</i> = 3. The study's insights into mixed convection heat transfer offer versatile applications, benefiting industries and equipment such as electronic cooling, chemical reactors, food processing, material fabrication, solar collectors, and nuclear reactor systems. Moreover, the findings are instrumental in the thermal ventilation of buildings and the development of micro-electromechanical systems.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"2965-2990"},"PeriodicalIF":2.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141008580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study compares the exergy of an ejector-based two evaporator cycle (EB-TEC) with a conventional two evaporator cycle (C-TEC). The analysis utilizes a modified Gouy–Stodola equation, which provides a more accurate insight of the system irreversibility compared to the standard Gouy–Stodola formulation. Furthermore, the comparison includes three working fluids, that is, R134a, R1234ze, and R600 in both the cycles. The study examines the effects of varying evaporators and condenser temperatures and the dryness fraction at the exit of Evaporator 1. The data is analyzed using an Engineering Equation Solver. The findings indicate that increasing the temperature of the low-temperature evaporator leads to a drop in exergy losses and enhancement in exergy efficiency in both the cycles. When the temperature of Evaporator 1 is increased, the total exergy of the EB-TEC is decreased but for the C-TEC, it is increased. Furthermore, increasing the condenser temperature results in higher exergy destruction in both EB-TEC and C-TEC. Notably, the maximum exergy destruction is 49.44 kW for R600, whereas the minimum exergy destruction is 14.42 kW for R1234ze in the EB-TEC.
{"title":"Exergy analysis of ejector-enhanced dual-evaporator cycle using effective temperature method","authors":"Parinam Anuradha","doi":"10.1002/htj.23073","DOIUrl":"10.1002/htj.23073","url":null,"abstract":"<p>This study compares the exergy of an ejector-based two evaporator cycle (EB-TEC) with a conventional two evaporator cycle (C-TEC). The analysis utilizes a modified Gouy–Stodola equation, which provides a more accurate insight of the system irreversibility compared to the standard Gouy–Stodola formulation. Furthermore, the comparison includes three working fluids, that is, R134a, R1234ze, and R600 in both the cycles. The study examines the effects of varying evaporators and condenser temperatures and the dryness fraction at the exit of Evaporator 1. The data is analyzed using an Engineering Equation Solver. The findings indicate that increasing the temperature of the low-temperature evaporator leads to a drop in exergy losses and enhancement in exergy efficiency in both the cycles. When the temperature of Evaporator 1 is increased, the total exergy of the EB-TEC is decreased but for the C-TEC, it is increased. Furthermore, increasing the condenser temperature results in higher exergy destruction in both EB-TEC and C-TEC. Notably, the maximum exergy destruction is 49.44 kW for R600, whereas the minimum exergy destruction is 14.42 kW for R1234ze in the EB-TEC.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"2991-3020"},"PeriodicalIF":2.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141006300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G. K. Pramod, N. Madhwesh, U. C. Arunachala, M. S. Manjunath
Thermohydraulic performance augmentation using turbulence promotors is a commonly adopted technique in solar air heater (SAH) applications. This article presents the thermohydraulic performance augmentation of triangular duct SAH using semi-conical vortex generators (SCVG) using computational fluid dynamics and experimental methodology for various flow Reynolds numbers ranging from 6000 to 21,000. An in-depth parametric analysis is undertaken to establish the influence of flow attack angle, relative longitudinal pitch, relative transverse pitch and cone diameter of SCVG on the thermohydraulic performance as indicated by the thermohydraulic performance parameter (THPP). The results reveal that the SCVG generates longitudinal vortices and introduces flow impingement zones which significantly affects the flow and heat transfer characteristics of air heaters. Correlations for Nusselt number and friction factor are established, which predicts the performance outcomes with an average error of 6.74% and 4.46%, respectively. The optimal THPP is determined to be 1.74 using artificial neural network model and Bonobo Optimization algorithm. The SCVG produces THPP values well above unity for the entire flow Reynolds number range of 6000–21,000.
{"title":"Thermohydraulic performance augmentation of triangular duct solar air heater using semi-conical vortex generators: Numerical and experimental study","authors":"G. K. Pramod, N. Madhwesh, U. C. Arunachala, M. S. Manjunath","doi":"10.1002/htj.23077","DOIUrl":"10.1002/htj.23077","url":null,"abstract":"<p>Thermohydraulic performance augmentation using turbulence promotors is a commonly adopted technique in solar air heater (SAH) applications. This article presents the thermohydraulic performance augmentation of triangular duct SAH using semi-conical vortex generators (SCVG) using computational fluid dynamics and experimental methodology for various flow Reynolds numbers ranging from 6000 to 21,000. An in-depth parametric analysis is undertaken to establish the influence of flow attack angle, relative longitudinal pitch, relative transverse pitch and cone diameter of SCVG on the thermohydraulic performance as indicated by the thermohydraulic performance parameter (THPP). The results reveal that the SCVG generates longitudinal vortices and introduces flow impingement zones which significantly affects the flow and heat transfer characteristics of air heaters. Correlations for Nusselt number and friction factor are established, which predicts the performance outcomes with an average error of 6.74% and 4.46%, respectively. The optimal THPP is determined to be 1.74 using artificial neural network model and Bonobo Optimization algorithm. The SCVG produces THPP values well above unity for the entire flow Reynolds number range of 6000–21,000.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 6","pages":"3021-3053"},"PeriodicalIF":2.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/htj.23077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141006036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Le Hung Toan Do, Thanh Tung Nguyen, Van Thanh Hoang, Minh Sang Tran
<p>Microchannel geometry is an important factor in determining droplet dynamics in droplet-based microfluidic systems, much like fluid properties and flow conditions. In this context, two important geometric parameters—the contraction ratio (<span></span><math>