The complexities of natural convection heat transfer are investigated through experimentation, focusing on the influence of geometric configurations such as spheres, cylinders, and cubes in external flows. The study aims to understand how different geometries affect heat transfer coefficients, providing insights for architectural and engineering applications. Experimental results revealed significant variations in heat transfer efficiency among geometric models, with cubic configurations exhibiting the lowest heat transfer rates compared with spherical and cylindrical counterparts. This underscores the critical impact of geometric configuration on thermal performance and heat dissipation characteristics. The findings highlight the necessity of considering geometric factors in design processes to optimize thermal management strategies. The study contributes to a deeper understanding of convective heat transfer mechanisms, emphasizing the importance of precise geometric modeling in enhancing energy efficiency and sustainability in built environments
{"title":"Investigation of the effect of geometric configurations on natural convection heat transfer in external flow","authors":"Birkut Güler","doi":"10.1002/htj.23111","DOIUrl":"https://doi.org/10.1002/htj.23111","url":null,"abstract":"<p>The complexities of natural convection heat transfer are investigated through experimentation, focusing on the influence of geometric configurations such as spheres, cylinders, and cubes in external flows. The study aims to understand how different geometries affect heat transfer coefficients, providing insights for architectural and engineering applications. Experimental results revealed significant variations in heat transfer efficiency among geometric models, with cubic configurations exhibiting the lowest heat transfer rates compared with spherical and cylindrical counterparts. This underscores the critical impact of geometric configuration on thermal performance and heat dissipation characteristics. The findings highlight the necessity of considering geometric factors in design processes to optimize thermal management strategies. The study contributes to a deeper understanding of convective heat transfer mechanisms, emphasizing the importance of precise geometric modeling in enhancing energy efficiency and sustainability in built environments</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3767-3780"},"PeriodicalIF":2.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to address critical challenges such as global warming and energy sustainability by targeting the reduction of high NOx emissions in diesel engines. The effects of acetone (AC) and magnesium oxide (MgO) nanoparticles (NPs) as additives in improving the physicochemical properties of biodiesel derived from renewable, nonedible Pistacia terebinthus oil, which is abundant in Turkey and has a high free fatty acid (FFA) content of 5.8%, were investigated. Due to the high FFA content, a two-step (esterification followed by transesterification [TR]) method was used for biodiesel production. Additionally, a quantitative analysis of biodiesel obtained by both single (TR) and two-step methods was performed to address a gap in the literature. The addition of AC and MgO NPs to B20 (80% diesel fuel and 20% biodiesel) fuel resulted in reductions in the rate of pressure rise, instantaneous energy release, cylinder pressure, mean gas temperature, and cumulative heat release rate. However, brake-specific fuel consumption increased, and brake thermal efficiency decreased. Emissions analyses showed a reduction in CO emissions by 6.65% with AC and 2.10% with AC + MgO, and a reduction in NOx emissions by 41.64% with AC and 46.03% with AC + MgO. However, hydrocarbon emissions increased by 26.48%. The study highlights the synergistic benefits of AC and MgO additives in biodiesel, presenting a viable strategy for improving the environmental and performance metrics of biodiesel blends. It provides new insights into alternative fuel formulations.
{"title":"Role of analytical methods in verifying biodiesel upgrades: Emphasis on nanoparticle and acetone integration for enhanced performance, combustion, and emissions","authors":"Halis Deviren, Erdal Çılğın, Hasan Bayındır","doi":"10.1002/htj.23110","DOIUrl":"https://doi.org/10.1002/htj.23110","url":null,"abstract":"<p>This study aims to address critical challenges such as global warming and energy sustainability by targeting the reduction of high NO<sub><i>x</i></sub> emissions in diesel engines. The effects of acetone (AC) and magnesium oxide (MgO) nanoparticles (NPs) as additives in improving the physicochemical properties of biodiesel derived from renewable, nonedible <i>Pistacia terebinthus</i> oil, which is abundant in Turkey and has a high free fatty acid (FFA) content of 5.8%, were investigated. Due to the high FFA content, a two-step (esterification followed by transesterification [TR]) method was used for biodiesel production. Additionally, a quantitative analysis of biodiesel obtained by both single (TR) and two-step methods was performed to address a gap in the literature. The addition of AC and MgO NPs to B20 (80% diesel fuel and 20% biodiesel) fuel resulted in reductions in the rate of pressure rise, instantaneous energy release, cylinder pressure, mean gas temperature, and cumulative heat release rate. However, brake-specific fuel consumption increased, and brake thermal efficiency decreased. Emissions analyses showed a reduction in CO emissions by 6.65% with AC and 2.10% with AC + MgO, and a reduction in NO<i><sub>x</sub></i> emissions by 41.64% with AC and 46.03% with AC + MgO. However, hydrocarbon emissions increased by 26.48%. The study highlights the synergistic benefits of AC and MgO additives in biodiesel, presenting a viable strategy for improving the environmental and performance metrics of biodiesel blends. It provides new insights into alternative fuel formulations.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3730-3766"},"PeriodicalIF":2.8,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed M. Hamza, Abubakar Shehu, Ibrahim Muhammad, Godwin Ojemeri, Abdulsalam Shuaibu
This study performs a time-dependent analysis of mixed convection of an incompressible fluid and heat sink/source factor in an upstanding slit superhydrophobic (SHO) microchannel in the involvement of temperature jump and electroosmotic flow conditions. The internal wall of one of the sides in the microchannel is intentionally modified to demonstrate SHO slip and temperature jump conditions. A transverse magnetic effect is introduced in the path of the flow. The steady-state solutions of the modeled problem have been analytically derived for temperature, velocity, pressure gradient, sheer stress, and heat transfer rate. The derived results are expounded thoroughly with the use of several plots. It is deduced that the elevating mixed convection (Gre), heat source/sink (Qs), Debye–Hückel (K), and nonlinear parameters (N) are observed to increase the fluid flow as time rises, and these effects are all higher when the velocity slip and temperature jump impacts are present. Further, the application of heat-generating parameters is viewed to encourage the fluid temperature in the microchannel. Finally, the comparison between the current investigation with the previously published findings demonstrates a very good consistency for the limiting cases.
{"title":"Electrokinetically controlled mixed convective heat flow in a slit microchannel","authors":"Muhammed M. Hamza, Abubakar Shehu, Ibrahim Muhammad, Godwin Ojemeri, Abdulsalam Shuaibu","doi":"10.1002/htj.23104","DOIUrl":"https://doi.org/10.1002/htj.23104","url":null,"abstract":"<p>This study performs a time-dependent analysis of mixed convection of an incompressible fluid and heat sink/source factor in an upstanding slit superhydrophobic (SHO) microchannel in the involvement of temperature jump and electroosmotic flow conditions. The internal wall of one of the sides in the microchannel is intentionally modified to demonstrate SHO slip and temperature jump conditions. A transverse magnetic effect is introduced in the path of the flow. The steady-state solutions of the modeled problem have been analytically derived for temperature, velocity, pressure gradient, sheer stress, and heat transfer rate. The derived results are expounded thoroughly with the use of several plots. It is deduced that the elevating mixed convection (<i>Gre</i>), heat source/sink (<i>Q<sub>s</sub></i>), Debye–Hückel (<i>K</i>), and nonlinear parameters (<i>N</i>) are observed to increase the fluid flow as time rises, and these effects are all higher when the velocity slip and temperature jump impacts are present. Further, the application of heat-generating parameters is viewed to encourage the fluid temperature in the microchannel. Finally, the comparison between the current investigation with the previously published findings demonstrates a very good consistency for the limiting cases.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3667-3686"},"PeriodicalIF":2.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aqila Shaheen, Imran Siddique, Zile Huma, Muhammad Ahsan, Zainab Khalid
This paper investigates the effects of magnetohydrodynamics and heat transfer on the peristaltic transport of Prandtl fluid in a vertical endoscopic tube. The reduction of the complexity of the equations governing the flow of Prandtl fluid entails the use of long wavelength and low Reynolds number approximations. These complex equations for the pressure gradient and velocity profile are handled analytically using the perturbation technique with convective boundary conditions, and the temperature and concentration profiles are carefully solved for the exact solution. The frictional forces and pressure rise are also simulated with numerical integration. The resulting formulas for velocity, temperature, concentration, pressure rise, and pressure gradient are graphed using the MATLAB and MATHMATICA software, and the effects of all the different physical parameters are investigated and assessed. The streamlines with five distinct wave types are sketched at the conclusion to show the phenomenon of trapping. It is investigated that the velocity profile rises due to buoyancy forces and falls due to the influence of magnetic forces.
{"title":"Comparative analysis of viscous dissipation effects on Prandtl fluid including contraction and relaxation phenomena","authors":"Aqila Shaheen, Imran Siddique, Zile Huma, Muhammad Ahsan, Zainab Khalid","doi":"10.1002/htj.23107","DOIUrl":"https://doi.org/10.1002/htj.23107","url":null,"abstract":"<p>This paper investigates the effects of magnetohydrodynamics and heat transfer on the peristaltic transport of Prandtl fluid in a vertical endoscopic tube. The reduction of the complexity of the equations governing the flow of Prandtl fluid entails the use of long wavelength and low Reynolds number approximations. These complex equations for the pressure gradient and velocity profile are handled analytically using the perturbation technique with convective boundary conditions, and the temperature and concentration profiles are carefully solved for the exact solution. The frictional forces and pressure rise are also simulated with numerical integration. The resulting formulas for velocity, temperature, concentration, pressure rise, and pressure gradient are graphed using the MATLAB and MATHMATICA software, and the effects of all the different physical parameters are investigated and assessed. The streamlines with five distinct wave types are sketched at the conclusion to show the phenomenon of trapping. It is investigated that the velocity profile rises due to buoyancy forces and falls due to the influence of magnetic forces.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3687-3705"},"PeriodicalIF":2.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper explores the effects of egg orientation and yolk position during thermal processing using computational fluid dynamics simulation and experimentation. A carboxymethyl cellulose suspension was used to simulate the egg white, and a two-dimensional model incorporated an air cell near the larger end. The simulation included four cases: two focused on vertical orientation with the yolk at the rear shell and the geometric center, and two on horizontal orientation with similar yolk positions. Repositioning the yolk in a horizontal orientation near the eggshell resulted in significant temperature variations. The findings show that a horizontal egg position, especially with the yolk near the eggshell, led to a significant 8%–16% reduction in heating times. This configuration also improved pasteurization efficiency, assessed by the F value, by about 13.8%. The study also revealed distinct flow patterns influenced by buoyancy forces, significantly related to temperature distribution inside the egg.
本文利用计算流体动力学模拟和实验,探讨了热加工过程中鸡蛋方向和蛋黄位置的影响。使用羧甲基纤维素悬浮液模拟蛋白,二维模型在大端附近加入了一个气室。模拟包括四种情况:两种是蛋黄位于后壳和几何中心的垂直方向,两种是蛋黄位置相似的水平方向。将蛋黄重新定位在靠近蛋壳的水平方向会导致显著的温度变化。研究结果表明,水平放置鸡蛋,特别是蛋黄靠近蛋壳,可使加热时间显著缩短 8%-16%。这种配置还提高了巴氏杀菌效率,根据 F 值评估,提高了约 13.8%。研究还揭示了受浮力影响的独特流动模式,这与鸡蛋内部的温度分布有很大关系。
{"title":"Numerical and experimental investigation of the effect of intact egg orientation and yolk positions on heat transfer and cold point location","authors":"Channarong Wantha","doi":"10.1002/htj.23109","DOIUrl":"https://doi.org/10.1002/htj.23109","url":null,"abstract":"<p>This paper explores the effects of egg orientation and yolk position during thermal processing using computational fluid dynamics simulation and experimentation. A carboxymethyl cellulose suspension was used to simulate the egg white, and a two-dimensional model incorporated an air cell near the larger end. The simulation included four cases: two focused on vertical orientation with the yolk at the rear shell and the geometric center, and two on horizontal orientation with similar yolk positions. Repositioning the yolk in a horizontal orientation near the eggshell resulted in significant temperature variations. The findings show that a horizontal egg position, especially with the yolk near the eggshell, led to a significant 8%–16% reduction in heating times. This configuration also improved pasteurization efficiency, assessed by the <i>F</i> value, by about 13.8%. The study also revealed distinct flow patterns influenced by buoyancy forces, significantly related to temperature distribution inside the egg.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3706-3729"},"PeriodicalIF":2.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we consider a mathematical model, which has a unique mechanism of heat transfer in the stretching/shrinking straight fin with an exponential profile. The thermal conductivity, internal heat generation, and heat transfer coefficient are considered temperature-dependent. Heat is exposed to the surroundings by convection and radiation. The governing differential equation and boundary conditions are presented in a dimensionless form. In our study, we considered variable surface emissivity, that is, a constant, and the linear function of a temperature. The convective heat transfer parameter is considered a power-low type. The novelty of this work is the application of temperature-dependent surface emissivity, and the problem is solved by the Legendre wavelet collocation method. A comparative analysis of the present results in the context of previous findings is presented in the form of a table for validation and found exactly the same. The impacts of distinct variables are presented in the form of figures and discussed in detail. The present analysis is focused on real-world applications and offers valuable insights for improving the design of fins.
{"title":"Temperature distribution in stretching/shrinking fin with variable parameters","authors":"Priti Sharma, Surjan Singh, Subrahamanyam Upadhyay","doi":"10.1002/htj.23103","DOIUrl":"10.1002/htj.23103","url":null,"abstract":"<p>In this paper, we consider a mathematical model, which has a unique mechanism of heat transfer in the stretching/shrinking straight fin with an exponential profile. The thermal conductivity, internal heat generation, and heat transfer coefficient are considered temperature-dependent. Heat is exposed to the surroundings by convection and radiation. The governing differential equation and boundary conditions are presented in a dimensionless form. In our study, we considered variable surface emissivity, that is, a constant, and the linear function of a temperature. The convective heat transfer parameter is considered a power-low type. The novelty of this work is the application of temperature-dependent surface emissivity, and the problem is solved by the Legendre wavelet collocation method. A comparative analysis of the present results in the context of previous findings is presented in the form of a table for validation and found exactly the same. The impacts of distinct variables are presented in the form of figures and discussed in detail. The present analysis is focused on real-world applications and offers valuable insights for improving the design of fins.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 7","pages":"3625-3642"},"PeriodicalIF":2.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141343425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study examines the impacts of thermal stratification and chemical reaction on magnetohydrodynamic (MHD) free convective flow along an accelerated vertical plate with variable temperature and exponential mass diffusion, set within a porous medium. Analytical solutions, utilized, are obtained through the Laplace transform technique to accurately represent the flow's physical mechanism. The research employs advanced mathematical models to analyze the intricate interplay between MHD and convective processes under varying thermal and exponential mass diffusion conditions, offering insights into fluid dynamics that closely simulate real-world conditions. The study draws a significant conclusion by contrasting the effects of thermal stratification with a nonstratified environment. It has been noted that when stratification is applied to the flow, the steady state is achieved more quickly. The study reveals that thermal stratification reduces fluid velocity and temperature but increases skin friction and the Nusselt number, diverging from nonstratified conditions. It also shows that parameters, like,