{"title":"Bone tissue engineering at a glance","authors":"Vincent Deplaigne, G. Rochefort","doi":"10.3934/bioeng.2022002","DOIUrl":"https://doi.org/10.3934/bioeng.2022002","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"29 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81444480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lamia Fatiha Kazi Tani, Mohammed Yassine Kazi Tani, B. Kadri
Currently, the gastric cancer is the source of the high mortality rate where it is diagnoses from the stomach and esophagus tests. To this end, the whole of studies in the analysis of cancer are built on AI (artificial intelligence) to develop the analysis accuracy and decrease the danger of death. Mostly, deep learning methods in images processing has made remarkable advancement. In this paper, we present a method for detection, recognition and segmentation of gastric cancer in endoscopic images. To this end, we propose a deep learning method named GAS-Net to detect and recognize gastric cancer from endoscopic images. Our method comprises at the beginning a preprocessing step for images to make all images in the same standard. After that, the GAS-Net method is based an entire architecture to form the network. A union between two loss functions is applied in order to adjust the pixel distribution of normal/abnormal areas. GAS-Net achieved excellent results in recognizing lesions on two datasets annotated by a team of expert from several disciplines (Dataset1, is a dataset of stomach cancer images of anonymous patients that was approved from a private medical-hospital clinic, Dataset2, is a publicly available and open dataset named HyperKvasir [1]). The final results were hopeful and proved the efficiency of the proposal. Moreover, the accuracy of classification in the test phase was 94.06%. This proposal offers a specific mode to detect, recognize and classify gastric tumors.
{"title":"Gas-Net: A deep neural network for gastric tumor semantic segmentation","authors":"Lamia Fatiha Kazi Tani, Mohammed Yassine Kazi Tani, B. Kadri","doi":"10.3934/bioeng.2022018","DOIUrl":"https://doi.org/10.3934/bioeng.2022018","url":null,"abstract":"Currently, the gastric cancer is the source of the high mortality rate where it is diagnoses from the stomach and esophagus tests. To this end, the whole of studies in the analysis of cancer are built on AI (artificial intelligence) to develop the analysis accuracy and decrease the danger of death. Mostly, deep learning methods in images processing has made remarkable advancement. In this paper, we present a method for detection, recognition and segmentation of gastric cancer in endoscopic images. To this end, we propose a deep learning method named GAS-Net to detect and recognize gastric cancer from endoscopic images. Our method comprises at the beginning a preprocessing step for images to make all images in the same standard. After that, the GAS-Net method is based an entire architecture to form the network. A union between two loss functions is applied in order to adjust the pixel distribution of normal/abnormal areas. GAS-Net achieved excellent results in recognizing lesions on two datasets annotated by a team of expert from several disciplines (Dataset1, is a dataset of stomach cancer images of anonymous patients that was approved from a private medical-hospital clinic, Dataset2, is a publicly available and open dataset named HyperKvasir [1]). The final results were hopeful and proved the efficiency of the proposal. Moreover, the accuracy of classification in the test phase was 94.06%. This proposal offers a specific mode to detect, recognize and classify gastric tumors.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"88 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90996710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microtissues in cancer modeling","authors":"C. Poignard","doi":"10.3934/bioeng.2022021","DOIUrl":"https://doi.org/10.3934/bioeng.2022021","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86136201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The immune-related adverse events resulting from the therapy of immune checkpoint inhibitors could cause kidney injury. Inflammatory reprogramming of regulatory T helper (Treg) cells or type 17 T helper (Th17) cells might be involved in the pathogenesis of nephropathy. Accumulating evidence confirms a connection between the diversity of gut microbiota and kidney diseases, suggesting that successful modification of gut microbiota could attenuate kidney injury. In other words, certain gut microbiota could contribute to the protection of kidneys via the gut-kidney axis. It has been shown that the dysbiosis of gut microbiota might affect the gut-kidney axis, leading to nephrotoxicity. On the contrary, altered levels of D-amino acids, ROS, and SCFAs through the adjustment of gut microbiota might be relevant to the reduction of nephrotoxicity. Here, we have discussed and suggested the beneficial roles of gut microbiota in the prevention of the kidney injury induced during immune-checkpoint therapy.
{"title":"Promising probiotics for the treatment of nephrotoxicity induced during immune-checkpoint therapy against cancers","authors":"Sayuri Yoshikawa, Kurumi Taniguchi, Haruka Sawamura, Yuka Ikeda, Ai Tsuji, Satoru Matsuda","doi":"10.3934/bioeng.2022019","DOIUrl":"https://doi.org/10.3934/bioeng.2022019","url":null,"abstract":"The immune-related adverse events resulting from the therapy of immune checkpoint inhibitors could cause kidney injury. Inflammatory reprogramming of regulatory T helper (Treg) cells or type 17 T helper (Th17) cells might be involved in the pathogenesis of nephropathy. Accumulating evidence confirms a connection between the diversity of gut microbiota and kidney diseases, suggesting that successful modification of gut microbiota could attenuate kidney injury. In other words, certain gut microbiota could contribute to the protection of kidneys via the gut-kidney axis. It has been shown that the dysbiosis of gut microbiota might affect the gut-kidney axis, leading to nephrotoxicity. On the contrary, altered levels of D-amino acids, ROS, and SCFAs through the adjustment of gut microbiota might be relevant to the reduction of nephrotoxicity. Here, we have discussed and suggested the beneficial roles of gut microbiota in the prevention of the kidney injury induced during immune-checkpoint therapy.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"10 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72692531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water-soluble polymers possess great advantages in current drug delivery systems, such as fast delivery through polymer matrix dissolution as well as promoting solid dispersion of poorly water-soluble drugs. In this work, water-soluble polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were blended (50/50) to electrospin with and without the incorporation of a model drug, melatonin (MLT), at various blend polymer concentrations. Results suggested that increasing blend PVA/PEO solution concentrations, up to 7 wt%, promoted the formation of smooth and defect-free drug-incorporating fibers with an average fiber diameter ranged from 300 to 700 nm. Mechanical properties of the blank and MLT-loaded PVA/PEO fibers showed dependence on fiber morphologies and fiber mat structures, due to polymer concentrations for electrospinning. Furthermore, the surface wettability of the blend PVA/PEO fibers were investigated and further correlated with the MLT release profile of the fibers. Results suggested that fiber mats with a more well-defined fiber structure promoted a linear release behavior within 10 minutes in vitro. These drug-incorporated fibers were compatible to human umbilical vein endothelial cells (HUVECs) up to 24 hours. In general, this work demonstrated the structure-property correlations of electrospun PVA/PEO fibers and their potential biomedical applications in fast delivery of small molecule drugs.
{"title":"Fast delivery of melatonin from electrospun blend polyvinyl alcohol and polyethylene oxide (PVA/PEO) fibers","authors":"Rachel Emerine, S. Chou","doi":"10.3934/bioeng.2022013","DOIUrl":"https://doi.org/10.3934/bioeng.2022013","url":null,"abstract":"Water-soluble polymers possess great advantages in current drug delivery systems, such as fast delivery through polymer matrix dissolution as well as promoting solid dispersion of poorly water-soluble drugs. In this work, water-soluble polyvinyl alcohol (PVA) and polyethylene oxide (PEO) were blended (50/50) to electrospin with and without the incorporation of a model drug, melatonin (MLT), at various blend polymer concentrations. Results suggested that increasing blend PVA/PEO solution concentrations, up to 7 wt%, promoted the formation of smooth and defect-free drug-incorporating fibers with an average fiber diameter ranged from 300 to 700 nm. Mechanical properties of the blank and MLT-loaded PVA/PEO fibers showed dependence on fiber morphologies and fiber mat structures, due to polymer concentrations for electrospinning. Furthermore, the surface wettability of the blend PVA/PEO fibers were investigated and further correlated with the MLT release profile of the fibers. Results suggested that fiber mats with a more well-defined fiber structure promoted a linear release behavior within 10 minutes in vitro. These drug-incorporated fibers were compatible to human umbilical vein endothelial cells (HUVECs) up to 24 hours. In general, this work demonstrated the structure-property correlations of electrospun PVA/PEO fibers and their potential biomedical applications in fast delivery of small molecule drugs.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"16 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88074109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Our brain is a complex information processing network in which the nervous system receives information from the environment to quickly react to incoming events or learns from experience to sharp our memory. In the nervous system, the brain states translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence of healthy brain cells with applications to Parkinson's disease (PD). In particular, we investigate the effects of random inputs in a subthalamic nucleus (STN) cell membrane potential model. The STN bursting phenomena and parkinsonian hypokinetic motor symptoms are closely connected, as electrical and chemical maneuvers modulating STN bursts are sufficient to ameliorate or mimic parkinsonian motor deficits. Deep brain stimulation (DBS) of the STN is an important surgical technique used in the treatment to improve PD symptoms. Our numerical results show that the random inputs strongly affect the spiking activities of the STN neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS treatment. Specifically, the existence of a random refractory period together with random input current in the system may substantially influence an increased irregularity of spike trains of the output neurons.
{"title":"Coupled effects of channels and synaptic dynamics in stochastic modelling of healthy and Parkinson's-disease-affected brains","authors":"T. Thieu, R. Melnik","doi":"10.3934/bioeng.2022015","DOIUrl":"https://doi.org/10.3934/bioeng.2022015","url":null,"abstract":"\u0000Our brain is a complex information processing network in which the nervous system receives information from the environment to quickly react to incoming events or learns from experience to sharp our memory. In the nervous system, the brain states translate collective activities of neurons interconnected via synaptic connections. In this paper, we study coupled effects of channels and synaptic dynamics under the stochastic influence of healthy brain cells with applications to Parkinson's disease (PD). In particular, we investigate the effects of random inputs in a subthalamic nucleus (STN) cell membrane potential model. The STN bursting phenomena and parkinsonian hypokinetic motor symptoms are closely connected, as electrical and chemical maneuvers modulating STN bursts are sufficient to ameliorate or mimic parkinsonian motor deficits. Deep brain stimulation (DBS) of the STN is an important surgical technique used in the treatment to improve PD symptoms. Our numerical results show that the random inputs strongly affect the spiking activities of the STN neuron not only in the case of healthy cells but also in the case of PD cells in the presence of DBS treatment. Specifically, the existence of a random refractory period together with random input current in the system may substantially influence an increased irregularity of spike trains of the output neurons.\u0000","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"59 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74705302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Fernandes, A. Farias, L. Carneiro, R. Santos, D. Torres, J. Silva, João Souza, É. Souza
This study carried out the screening of wastes from Amazon plants to produce hydrolysates with a high monosaccharides content for ethanol production. Initially, we hydrolyzed (diluted acid) Amazon wastes (peel from the fruit of Astrocaryum aculeatum Meyer, peel from the fruit of Bactris gasipaes Kunth, straw obtained from endocarp of the fruit of Euterpe oleracea Mart., peel from the fruit of Theobroma grandiflorum Schumann and peel from the root of Manihot esculenta Crant) to obtain hydrolysates with the high content of fermentable sugars. Then, we investigated by 23 factorial design the influence of the factors: a) hydrolysis time (min); b) H2SO4-to-waste ratio (g/g) and c) solid-to-liquid ratio (g/mL) in the variables reducing sugars and furans. The hydrolysis of the peel of the fruit of Bactris gasipaes resulted in the highest concentration of reducing sugars (23.7 g/L). After detoxification and concentration process, the Bactris gasipaes hydrolysate results in 96.7 g/L of reducing sugars largely fermentable (90%) by Saccharomyces cerevisiae PE-2. The experimental design demonstrated that the factors H2SO4-to-waste ratio (g/g) and solid-to-liquid ratio (g/mL) were the most significant affecting the final content of reducing sugars and furans in the hydrolysate of the peel of Bactris gasipaes. Hydrolysis time of 4.4 min, H2SO4-to-waste ratio of 0.63 g/g, and the solid-to-liquid ratio of 0.17 g/mL resulted in the concentration of reducing sugars of 49 g/L. This study shows the potential of peels from the fruit of Bactris gasipaes to produce ethanol.
{"title":"Dilute acid hydrolysis of wastes of fruits from Amazon for ethanol production","authors":"F. Fernandes, A. Farias, L. Carneiro, R. Santos, D. Torres, J. Silva, João Souza, É. Souza","doi":"10.3934/bioeng.2021019","DOIUrl":"https://doi.org/10.3934/bioeng.2021019","url":null,"abstract":"<abstract> <p>This study carried out the screening of wastes from Amazon plants to produce hydrolysates with a high monosaccharides content for ethanol production. Initially, we hydrolyzed (diluted acid) Amazon wastes (peel from the fruit of <italic>Astrocaryum aculeatum</italic> Meyer, peel from the fruit of <italic>Bactris gasipaes</italic> Kunth, straw obtained from endocarp of the fruit of <italic>Euterpe oleracea</italic> Mart., peel from the fruit of <italic>Theobroma grandiflorum</italic> Schumann and peel from the root of <italic>Manihot esculenta</italic> Crant) to obtain hydrolysates with the high content of fermentable sugars. Then, we investigated by 2<sup>3</sup> factorial design the influence of the factors: a) hydrolysis time (min); b) H<sub>2</sub>SO<sub>4</sub>-to-waste ratio (g/g) and c) solid-to-liquid ratio (g/mL) in the variables reducing sugars and furans. The hydrolysis of the peel of the fruit of <italic>Bactris gasipaes</italic> resulted in the highest concentration of reducing sugars (23.7 g/L). After detoxification and concentration process, the <italic>Bactris gasipaes</italic> hydrolysate results in 96.7 g/L of reducing sugars largely fermentable (90%) by <italic>Saccharomyces cerevisiae</italic> PE-2. The experimental design demonstrated that the factors H<sub>2</sub>SO<sub>4</sub>-to-waste ratio (g/g) and solid-to-liquid ratio (g/mL) were the most significant affecting the final content of reducing sugars and furans in the hydrolysate of the peel of <italic>Bactris gasipaes</italic>. Hydrolysis time of 4.4 min, H<sub>2</sub>SO<sub>4</sub>-to-waste ratio of 0.63 g/g, and the solid-to-liquid ratio of 0.17 g/mL resulted in the concentration of reducing sugars of 49 g/L. This study shows the potential of peels from the fruit of <italic>Bactris gasipaes</italic> to produce ethanol.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"33 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76222948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioengineering applied to Covid-19 pandemic: from bench to bedside","authors":"R. Buchaim","doi":"10.3934/bioeng.2021002","DOIUrl":"https://doi.org/10.3934/bioeng.2021002","url":null,"abstract":"<jats:p xml:lang=\"fr\" />","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"42 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72650107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Pinheiro, Augusto Bücker, A. C. Cortez, J. V. D. de Souza, Érica Simplício de Souza
The tropical fruit cupuassu comes from Theobroma grandiflorum (SCHUM), a close relative of cocoa. Cupuassu has a rich yet delicate flavour profile with notes of chocolate, pineapple, passion fruit and other fruits. Here, we produced a cupuassu-fruit wine using a Saccharomyces cerevisiae inoculum (and univariate analysis to determine conditions for optimum ethanol production) and then fermented this wine to produce a delicate and unique cupuassu vinegar using acid-acid bacteria. The cupuassu wine was produced by fermentation of juice chaptalized with sucrose, with a final ethanol concentration of 10% (v/v). Acetic-acid fermentations were carried out in both a bubble-column reactor and a mechanically non-aerated reactor (high-surface reactor), producing final concentrations of 4.5 and 3.3% (w/v) acetic acid, respectively. The ethanol- and acetic-acid yields obtained were comparable to those of other fruit wines and fruit vinegars. The cupuassu vinegar retained the rich flavor profile of the cupuassu. We believe that the production of flavorsome products from local plants can have benefits for conservation by promoting ecologically sustainable agriculture and may contribute to cultural identity of Amazon people.
{"title":"Vinegar production from Theobroma grandiflorum SCHUM (cupuassu)","authors":"A. Pinheiro, Augusto Bücker, A. C. Cortez, J. V. D. de Souza, Érica Simplício de Souza","doi":"10.3934/bioeng.2021022","DOIUrl":"https://doi.org/10.3934/bioeng.2021022","url":null,"abstract":"The tropical fruit cupuassu comes from Theobroma grandiflorum (SCHUM), a close relative of cocoa. Cupuassu has a rich yet delicate flavour profile with notes of chocolate, pineapple, passion fruit and other fruits. Here, we produced a cupuassu-fruit wine using a Saccharomyces cerevisiae inoculum (and univariate analysis to determine conditions for optimum ethanol production) and then fermented this wine to produce a delicate and unique cupuassu vinegar using acid-acid bacteria. The cupuassu wine was produced by fermentation of juice chaptalized with sucrose, with a final ethanol concentration of 10% (v/v). Acetic-acid fermentations were carried out in both a bubble-column reactor and a mechanically non-aerated reactor (high-surface reactor), producing final concentrations of 4.5 and 3.3% (w/v) acetic acid, respectively. The ethanol- and acetic-acid yields obtained were comparable to those of other fruit wines and fruit vinegars. The cupuassu vinegar retained the rich flavor profile of the cupuassu. We believe that the production of flavorsome products from local plants can have benefits for conservation by promoting ecologically sustainable agriculture and may contribute to cultural identity of Amazon people.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82628641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kurumi Taniguchi, Yuka Ikeda, Nozomi Nagase, Ai Tsuji, Y. Kitagishi, Satoru Matsuda
Psychiatric disorders may extremely impair the quality of life with patients and are important reasons of social disability. Several data have shown that psychiatric disorders are associated with an altered composition of gut microbiota. Dietary intake could determine the microbiota, which contribute to produce various metabolites of fermentation such as short chain fatty acids. Some of the metabolites could result in epigenetic alterations leading to the disease susceptibility. Epigenetic dysfunction is in fact implicated in various psychiatric and neurologic disorders. For example, it has been shown that neuroepigenetic dysregulation occurs in psychiatric disorders including schizophrenia. Several studies have demonstrated that the intestinal microbiome may influence the function of central nervous system. Furthermore, it has been proved that the alterations in the gut microbiota-composition might affect in the bidirectional communication between gut and brain. Similarly, evidences demonstrating the association between psychiatric disorders and the gut microbiota have come from preclinical studies. It is clear that an intricate symbiotic relationship might exist between host and microbe, although the practical significance of the gut microbiota has not yet to be determined. In this review, we have summarized the function of gut microbiota in main psychiatric disorders with respect to the mental health. In addition, we would like to discuss the potential mechanisms of the disorders for the practical diagnosis and future treatment by using bioengineering of microbiota and their metabolites.
{"title":"Implications of Gut-Brain axis in the pathogenesis of Psychiatric disorders","authors":"Kurumi Taniguchi, Yuka Ikeda, Nozomi Nagase, Ai Tsuji, Y. Kitagishi, Satoru Matsuda","doi":"10.3934/bioeng.2021021","DOIUrl":"https://doi.org/10.3934/bioeng.2021021","url":null,"abstract":"Psychiatric disorders may extremely impair the quality of life with patients and are important reasons of social disability. Several data have shown that psychiatric disorders are associated with an altered composition of gut microbiota. Dietary intake could determine the microbiota, which contribute to produce various metabolites of fermentation such as short chain fatty acids. Some of the metabolites could result in epigenetic alterations leading to the disease susceptibility. Epigenetic dysfunction is in fact implicated in various psychiatric and neurologic disorders. For example, it has been shown that neuroepigenetic dysregulation occurs in psychiatric disorders including schizophrenia. Several studies have demonstrated that the intestinal microbiome may influence the function of central nervous system. Furthermore, it has been proved that the alterations in the gut microbiota-composition might affect in the bidirectional communication between gut and brain. Similarly, evidences demonstrating the association between psychiatric disorders and the gut microbiota have come from preclinical studies. It is clear that an intricate symbiotic relationship might exist between host and microbe, although the practical significance of the gut microbiota has not yet to be determined. In this review, we have summarized the function of gut microbiota in main psychiatric disorders with respect to the mental health. In addition, we would like to discuss the potential mechanisms of the disorders for the practical diagnosis and future treatment by using bioengineering of microbiota and their metabolites.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"5 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78514901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}