Zanieczyszczenie środowiska oraz wzrost emisji dwutlenku węgla do atmosfery stanowią obecnie główne problemy dotyczące nie tylko gospodarki światowej, ale w szczególności krajowej. Istnieje wiele źródeł zanieczyszczeń, jednak w naszym kraju jako główne wymienia się elektrownie, w których wytwarzanie energii odbywa się dzięki paliwom kopalnym, co prowadzi do wysokiej emisyjności CO2. Obecnie głównym aspektem jest nie tylko ograniczenie emisji dwutlenku węgla do atmosfery, ale i możliwość jego skutecznego wychwytywania i trwałego magazynowania. Jedną z możliwości jest wykorzystanie do składowania CO2 wyeksploatowanych złóż ropy i gazu oraz poziomów solankowych. Przemysł naftowy w naszym kraju do uszczelniania kolumny rur okładzinowych stosuje konwencjonalne zaczyny cementowe na bazie cementu portlandzkiego lub wiertniczego „G” wraz z innymi dodatkami lub/i domieszkami regulującymi parametry zaczynów i kamieni cementowych. Powszechnie używane zaczyny cementowe pod wpływem rozpuszczonego w wodzie CO2 mogą ulegać tzw. korozji węglanowej. Działanie dwutlenku węgla w stwardniałym zaczynie polega na wyługowywaniu z matrycy cementowej związków wapnia: najpierw portlandytu (Ca(OH)2), a następnie uwodnionych glinianów i krzemianów wapniowych. Tworzący się w tych reakcjach kwaśny węglan wapniowy jest łatwo rozpuszczalny i ulega wymywaniu ze stwardniałego zaczynu cementowego. Przy wysokim stężeniu CO2 zachodzą dalsze niekorzystne reakcje chemiczne rozkładu uwodnionych glinianów wapniowych i fazy CSH. Celem badań laboratoryjnych była analiza wpływu korozji węglanowej na zmianę parametrów technologicznych stwardniałego zaczynu w funkcji czasu jego sezonowania. Badaniom laboratoryjnym poddano stwardniałe zaczyny cementowe wykonane z receptur powszechnie stosowanych w krajowym przemyśle naftowym podczas uszczelniania kolumny rur okładzinowych w temperaturach od 60°C do 80°C. Badania prowadzono na zaczynach cementowo-lateksowych. Próbki stwardniałego zaczynu cementowego powstałe po utwardzeniu zaczynów przechowywane były w środowisku wodnym nasyconym CO2 w ustalonych warunkach ciśnienia i temperatury. Próbki stwardniałego zaczynu okresowo badano. Analizowany był wpływ dwutlenku węgla na zmiany parametrów mechanicznych stwardniałego zaczynu w funkcji czasu jego sezonowania. Przeprowadzone wstępne badania oraz otrzymane wyniki pokazały wpływ korozji węglanowej na zmiany parametrów mechanicznych stwardniałego zaczynu cementowego oraz pokazały możliwość zastosowania wyeksploatowanych otworów wiertniczych do ewentualnego magazynowania dwutlenku węgla. Z wybranych zaczynów cementowych sporządzono próbki stwardniałych zaczynów cementowych. Zaczyny cementowe wiązały przez 48 h w ustalonej temperaturze i ciśnieniu (warunki otworopodobne). Otrzymane próbki stwardniałego zaczynu cementowego poddano badaniu: wytrzymałości na ściskanie, wytrzymałości na zginanie, przyczepności do rur stalowych.
{"title":"Ocena wpływu korozji węglanowej na stwardniałe zaczyny cementowe uszczelniające otwory przeznaczone do sekwestracji CO2","authors":"Ł. Kut","doi":"10.18668/ng.2023.01.05","DOIUrl":"https://doi.org/10.18668/ng.2023.01.05","url":null,"abstract":"Zanieczyszczenie środowiska oraz wzrost emisji dwutlenku węgla do atmosfery stanowią obecnie główne problemy dotyczące nie tylko gospodarki światowej, ale w szczególności krajowej. Istnieje wiele źródeł zanieczyszczeń, jednak w naszym kraju jako główne wymienia się elektrownie, w których wytwarzanie energii odbywa się dzięki paliwom kopalnym, co prowadzi do wysokiej emisyjności CO2. Obecnie głównym aspektem jest nie tylko ograniczenie emisji dwutlenku węgla do atmosfery, ale i możliwość jego skutecznego wychwytywania i trwałego magazynowania. Jedną z możliwości jest wykorzystanie do składowania CO2 wyeksploatowanych złóż ropy i gazu oraz poziomów solankowych. Przemysł naftowy w naszym kraju do uszczelniania kolumny rur okładzinowych stosuje konwencjonalne zaczyny cementowe na bazie cementu portlandzkiego lub wiertniczego „G” wraz z innymi dodatkami lub/i domieszkami regulującymi parametry zaczynów i kamieni cementowych. Powszechnie używane zaczyny cementowe pod wpływem rozpuszczonego w wodzie CO2 mogą ulegać tzw. korozji węglanowej. Działanie dwutlenku węgla w stwardniałym zaczynie polega na wyługowywaniu z matrycy cementowej związków wapnia: najpierw portlandytu (Ca(OH)2), a następnie uwodnionych glinianów i krzemianów wapniowych. Tworzący się w tych reakcjach kwaśny węglan wapniowy jest łatwo rozpuszczalny i ulega wymywaniu ze stwardniałego zaczynu cementowego. Przy wysokim stężeniu CO2 zachodzą dalsze niekorzystne reakcje chemiczne rozkładu uwodnionych glinianów wapniowych i fazy CSH. Celem badań laboratoryjnych była analiza wpływu korozji węglanowej na zmianę parametrów technologicznych stwardniałego zaczynu w funkcji czasu jego sezonowania. Badaniom laboratoryjnym poddano stwardniałe zaczyny cementowe wykonane z receptur powszechnie stosowanych w krajowym przemyśle naftowym podczas uszczelniania kolumny rur okładzinowych w temperaturach od 60°C do 80°C. Badania prowadzono na zaczynach cementowo-lateksowych. Próbki stwardniałego zaczynu cementowego powstałe po utwardzeniu zaczynów przechowywane były w środowisku wodnym nasyconym CO2 w ustalonych warunkach ciśnienia i temperatury. Próbki stwardniałego zaczynu okresowo badano. Analizowany był wpływ dwutlenku węgla na zmiany parametrów mechanicznych stwardniałego zaczynu w funkcji czasu jego sezonowania. Przeprowadzone wstępne badania oraz otrzymane wyniki pokazały wpływ korozji węglanowej na zmiany parametrów mechanicznych stwardniałego zaczynu cementowego oraz pokazały możliwość zastosowania wyeksploatowanych otworów wiertniczych do ewentualnego magazynowania dwutlenku węgla. Z wybranych zaczynów cementowych sporządzono próbki stwardniałych zaczynów cementowych. Zaczyny cementowe wiązały przez 48 h w ustalonej temperaturze i ciśnieniu (warunki otworopodobne). Otrzymane próbki stwardniałego zaczynu cementowego poddano badaniu: wytrzymałości na ściskanie, wytrzymałości na zginanie, przyczepności do rur stalowych.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"10 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85419343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W artykule przedstawiono realizację wybranych zadań przyjętych przez KE w ramach planu REPowerEU, zmierzającego do uniezależnienia Europy od rosyjskich paliw kopalnych, a równocześnie do budowy nowego europejskiego systemu energetycznego wraz z odpowiednią infrastrukturą. Zwrócono uwagę na kilka aspektów, w tym między innymi na pilną konieczność zdywersyfikowania źródeł dostaw gazu ziemnego do UE. Omówiono działania wewnątrzwspólnotowe podjęte dla złagodzenia kryzysu energetycznego (utworzenie między innymi unijnej platformy energetycznej, zawarcie szeregu porozumień tzw. solidarnościowych między krajami członkowskimi na dostawy gazu w sytuacjach kryzysowych). Przedstawiono planowane inwestycje o charakterze wspólnotowym zwiększające możliwości zaopatrzenia w gaz (w tym między innymi terminal pływający w Gdańsku, rozbudowa gazociągu przesyłowego LNG przez Pireneje i rozbudowa połączeń systemów przesyłowych Hiszpanii, Francji czy Włoch z systemami afrykańskimi). Zaprezentowano wybrane projekty inwestycyjne związane z dostarczaniem gazu do Polski, a współfinansowane ze źródeł europejskich. Podkreślono istotne znaczenie oszczędzania i efektywnego wykorzystania energii, będących najtańszym, ale i najbardziej skutecznym sposobem zwiększenia bezpieczeństwa energetycznego.
{"title":"Zaawansowanie działań Komisji Europejskiej ukierunkowanych na uniezależnienie Europy od rosyjskich paliw kopalnych","authors":"M. Ciechanowska","doi":"10.18668/ng.2023.01.07","DOIUrl":"https://doi.org/10.18668/ng.2023.01.07","url":null,"abstract":"W artykule przedstawiono realizację wybranych zadań przyjętych przez KE w ramach planu REPowerEU, zmierzającego do uniezależnienia Europy od rosyjskich paliw kopalnych, a równocześnie do budowy nowego europejskiego systemu energetycznego wraz z odpowiednią infrastrukturą. Zwrócono uwagę na kilka aspektów, w tym między innymi na pilną konieczność zdywersyfikowania źródeł dostaw gazu ziemnego do UE. Omówiono działania wewnątrzwspólnotowe podjęte dla złagodzenia kryzysu energetycznego (utworzenie między innymi unijnej platformy energetycznej, zawarcie szeregu porozumień tzw. solidarnościowych między krajami członkowskimi na dostawy gazu w sytuacjach kryzysowych). Przedstawiono planowane inwestycje o charakterze wspólnotowym zwiększające możliwości zaopatrzenia w gaz (w tym między innymi terminal pływający w Gdańsku, rozbudowa gazociągu przesyłowego LNG przez Pireneje i rozbudowa połączeń systemów przesyłowych Hiszpanii, Francji czy Włoch z systemami afrykańskimi). Zaprezentowano wybrane projekty inwestycyjne związane z dostarczaniem gazu do Polski, a współfinansowane ze źródeł europejskich. Podkreślono istotne znaczenie oszczędzania i efektywnego wykorzystania energii, będących najtańszym, ale i najbardziej skutecznym sposobem zwiększenia bezpieczeństwa energetycznego.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"15 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75797657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jednym z niezbędnych parametrów do określenia warunków termicznych zbiornika geotermalnego jest współczynnik przewodności cieplnej skał. Przewodność cieplna zależy od innych własności skał, takich jak skład mineralny i porowatość. Do obliczenia wartości tego parametru można więc stosować modele matematyczne uwzględniające zarówno zawartość objętościową i przewodność cieplną poszczególnych minerałów i roztworów porowych, jak i strukturę skały. W pracy wykorzystano różnego rodzaju modele, od najprostszych, warstwowych, po bardziej skomplikowane modele inkluzji niesferycznych. Obliczone wartości zweryfikowano na podstawie pomiarów laboratoryjnych przewodności cieplnej. Badania wykonano na próbkach dolomitu charakteryzujących się mało zróżnicowanym składem mineralnym, a jednocześnie dużą zmiennością porowatości (od 3% do 27%). Parametr porowatości ma widoczny wpływ na dopasowanie poszczególnych modeli matematycznych. Najlepszą zbieżność wartości pomierzonych i wyliczonych uzyskano w przypadku próbek o wysokiej porowatości (powyżej 25%) za pomocą modelu średniej arytmetycznej. W przypadku próbek o niższej porowatości najlepsze dopasowanie otrzymano przy wykorzystaniu modelu średniej harmonicznej, modelu inkluzji sferycznych (przypadek skały składającej się ze sferycznych ziaren rozproszonych w roztworze porowym) oraz modeli inkluzji niesferycznych (przypadek porów w formie szczelin o kształcie dysków). Wszystkie modele dobrze odzwierciedlają trendy zmienności otrzymane dla wartości pomierzonych. Uzyskane korelacje charakteryzują się wysokimi współczynnikami determinacji R2, przekraczającymi 0,86. Wysoka jakość korelacji pozwoliła na wprowadzenie poprawki umożliwiającej przybliżenie wartości wymodelowanych do rzeczywistych. Otrzymane wyniki pozwoliły na dobór optymalnych modeli umożliwiających ocenę wartości przewodności cieplnej dolomitów na podstawie składu mineralnego. W przypadku skał o bardzo wysokiej, przekraczającej 25%, porowatości najlepiej dopasowuje się model średniej arytmetycznej. W przypadku pozostałych próbek najlepszą zgodność wartości wyliczonych i pomierzonych uzyskano po zastosowaniu poprawki; wyniki są bardzo zbliżone dla wszystkich zastosowanych modeli.
{"title":"Szacowanie wartości współczynnika przewodności cieplnej skał dolomitu głównego na podstawie składu mineralnego i porowatości","authors":"A. Przelaskowska, Benedykt Kubik","doi":"10.18668/ng.2023.01.01","DOIUrl":"https://doi.org/10.18668/ng.2023.01.01","url":null,"abstract":"Jednym z niezbędnych parametrów do określenia warunków termicznych zbiornika geotermalnego jest współczynnik przewodności cieplnej skał. Przewodność cieplna zależy od innych własności skał, takich jak skład mineralny i porowatość. Do obliczenia wartości tego parametru można więc stosować modele matematyczne uwzględniające zarówno zawartość objętościową i przewodność cieplną poszczególnych minerałów i roztworów porowych, jak i strukturę skały. W pracy wykorzystano różnego rodzaju modele, od najprostszych, warstwowych, po bardziej skomplikowane modele inkluzji niesferycznych. Obliczone wartości zweryfikowano na podstawie pomiarów laboratoryjnych przewodności cieplnej. Badania wykonano na próbkach dolomitu charakteryzujących się mało zróżnicowanym składem mineralnym, a jednocześnie dużą zmiennością porowatości (od 3% do 27%). Parametr porowatości ma widoczny wpływ na dopasowanie poszczególnych modeli matematycznych. Najlepszą zbieżność wartości pomierzonych i wyliczonych uzyskano w przypadku próbek o wysokiej porowatości (powyżej 25%) za pomocą modelu średniej arytmetycznej. W przypadku próbek o niższej porowatości najlepsze dopasowanie otrzymano przy wykorzystaniu modelu średniej harmonicznej, modelu inkluzji sferycznych (przypadek skały składającej się ze sferycznych ziaren rozproszonych w roztworze porowym) oraz modeli inkluzji niesferycznych (przypadek porów w formie szczelin o kształcie dysków). Wszystkie modele dobrze odzwierciedlają trendy zmienności otrzymane dla wartości pomierzonych. Uzyskane korelacje charakteryzują się wysokimi współczynnikami determinacji R2, przekraczającymi 0,86. Wysoka jakość korelacji pozwoliła na wprowadzenie poprawki umożliwiającej przybliżenie wartości wymodelowanych do rzeczywistych. Otrzymane wyniki pozwoliły na dobór optymalnych modeli umożliwiających ocenę wartości przewodności cieplnej dolomitów na podstawie składu mineralnego. W przypadku skał o bardzo wysokiej, przekraczającej 25%, porowatości najlepiej dopasowuje się model średniej arytmetycznej. W przypadku pozostałych próbek najlepszą zgodność wartości wyliczonych i pomierzonych uzyskano po zastosowaniu poprawki; wyniki są bardzo zbliżone dla wszystkich zastosowanych modeli.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"28 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74921618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Szuflita, W. Krasodomski, J. Kuśnierczyk, Mirosław Wojnicki, M. Warnecki
Ze względu na wysoką cenę lekkich rop większość rafinerii skłania się do zakupu większych ilości tańszych rop „okazyjnych”, które są cięższe i zawierają wyższe stężenia siarki i kwasów naftenowych. Takie podejście doprowadza do większej częstotliwości prac serwisowych związanych z oczyszczaniem instalacji procesowej w rafinerii. Na szczęście zrozumienie przyczyn i metod łagodzenia wytrącania się zanieczyszczeń ropopochodnych uległo ostatnio znacznej poprawie dzięki opracowaniu narzędzi do przewidywania i identyfikacji. Co zaskakujące, 90% zanieczyszczeń ropopochodnych w rafinacji ma tylko kilka wspólnych przyczyn. Analiza osadu zwykle pozwala na zidentyfikowanie pierwotnej przyczyny, którą potwierdza odnalezienie prekursora tego niekorzystnego zjawiska w ropie naftowej przepływającej przez zanieczyszczoną jednostkę instalacji. Odpowiednie rozpoznanie zagadnienia może wprowadzić szereg potencjalnych metod łagodzących, z których dana rafineria może wybrać najlepszą do wdrożenia. Każdy kraj na świecie dąży do osiągnięcia jak największego bezpieczeństwa energetycznego, a tym samym do dywersyfikacji dostaw ropy i innych surowców. W przypadku ropy, gdy pozyskiwana jest ona z różnych źródeł, generuje się dodatkowy problem, a mianowicie kompatybilność. Okazuje się, że po zmieszaniu niektóre ropy wykazują tendencje do wytrącania osadów w zbiornikach magazynowych, a następnie w ciągu logistycznym. W jednej z poprzednich prac opracowano skuteczną metodę filtrowania pozwalającą na określenie kompatybilności rop i ich mieszanin. W obecnej pracy skoncentrowano się na tym, aby nowa metoda pozwoliła na szybszą możliwość wykonania pomiaru kompatybilności przy jednoczesnej możliwości ponownego wykorzystania tej samej próbki. Opracowany nowy sposób badań kompatybilności z wykorzystaniem mikroskopu (ang. high-pressure microscope, HPM) zastosowano do dwóch rop pochodzących z różnych kierunków dostaw. Pomiary wykonano dla rop i ich mieszanin w temperaturze 120°C i pod ciśnieniem 25 bar. Pomiar kompatybilności rop metodą filtrowania wykorzystano do celów porównawczych, gdzie masa odseparowanego osadu na specjalistycznych filtrach stanowiła wyznacznik kompatybilności badanych rop.
{"title":"Kompatybilność rop badana z zastosowaniem mikroskopu wysokociśnieniowego w warunkach dynamicznych","authors":"S. Szuflita, W. Krasodomski, J. Kuśnierczyk, Mirosław Wojnicki, M. Warnecki","doi":"10.18668/ng.2023.01.02","DOIUrl":"https://doi.org/10.18668/ng.2023.01.02","url":null,"abstract":"Ze względu na wysoką cenę lekkich rop większość rafinerii skłania się do zakupu większych ilości tańszych rop „okazyjnych”, które są cięższe i zawierają wyższe stężenia siarki i kwasów naftenowych. Takie podejście doprowadza do większej częstotliwości prac serwisowych związanych z oczyszczaniem instalacji procesowej w rafinerii. Na szczęście zrozumienie przyczyn i metod łagodzenia wytrącania się zanieczyszczeń ropopochodnych uległo ostatnio znacznej poprawie dzięki opracowaniu narzędzi do przewidywania i identyfikacji. Co zaskakujące, 90% zanieczyszczeń ropopochodnych w rafinacji ma tylko kilka wspólnych przyczyn. Analiza osadu zwykle pozwala na zidentyfikowanie pierwotnej przyczyny, którą potwierdza odnalezienie prekursora tego niekorzystnego zjawiska w ropie naftowej przepływającej przez zanieczyszczoną jednostkę instalacji. Odpowiednie rozpoznanie zagadnienia może wprowadzić szereg potencjalnych metod łagodzących, z których dana rafineria może wybrać najlepszą do wdrożenia. Każdy kraj na świecie dąży do osiągnięcia jak największego bezpieczeństwa energetycznego, a tym samym do dywersyfikacji dostaw ropy i innych surowców. W przypadku ropy, gdy pozyskiwana jest ona z różnych źródeł, generuje się dodatkowy problem, a mianowicie kompatybilność. Okazuje się, że po zmieszaniu niektóre ropy wykazują tendencje do wytrącania osadów w zbiornikach magazynowych, a następnie w ciągu logistycznym. W jednej z poprzednich prac opracowano skuteczną metodę filtrowania pozwalającą na określenie kompatybilności rop i ich mieszanin. W obecnej pracy skoncentrowano się na tym, aby nowa metoda pozwoliła na szybszą możliwość wykonania pomiaru kompatybilności przy jednoczesnej możliwości ponownego wykorzystania tej samej próbki. Opracowany nowy sposób badań kompatybilności z wykorzystaniem mikroskopu (ang. high-pressure microscope, HPM) zastosowano do dwóch rop pochodzących z różnych kierunków dostaw. Pomiary wykonano dla rop i ich mieszanin w temperaturze 120°C i pod ciśnieniem 25 bar. Pomiar kompatybilności rop metodą filtrowania wykorzystano do celów porównawczych, gdzie masa odseparowanego osadu na specjalistycznych filtrach stanowiła wyznacznik kompatybilności badanych rop.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76224381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W artykule przedstawiono działania Komisji Europejskiej ujęte w planie REPowerEU, mające na celu z jednej strony zapewnienie bezpieczeństwa energetycznego krajów członkowskich UE po agresji Rosji na Ukrainę i nałożeniu sankcji na Rosję, a z drugiej – ograniczenie nasilających się obecnie coraz bardziej negatywnych zmian klimatycznych. Aby przeciwdziałać tym zmianom, koniecznością jest odejście od wykorzystywania paliw kopalnych na rzecz odnawialnych źródeł energii (OZE). Scharakteryzowano udział energii OZE w bilansach energetycznych wybranych krajów europejskich i pozaeuropejskich poprzez przedstawienie wielkości zainstalowanej mocy energii elektrycznej pochodzącej z poszczególnych typów źródeł energii: wiatru, promieniowania słonecznego, wody, biomasy (biopaliwa stałe, ciekłe i gazowe) oraz z zasobów geotermalnych. Dane te pochodzą z roku 2021 i dotyczą krajów najbardziej zaawansowanych we wdrażaniu technologii OZE. Drugim analizowanym parametrem jest wielkość ciepła wygenerowanego ze źródeł odnawialnych oraz pozyskanego w procesie wysokosprawnej kogeneracji. W rozdziale dotyczącym udziału energii odnawialnej w strukturze polskiej energetyki przedstawiono wyniki z I półrocza 2022 r., wskazujące, że zielona energetyka stanowiła tylko 22,5% całej wyprodukowanej energii, przy największym udziale elektrowni wiatrowych (11,9%) i instalacji fotowoltaicznych (4,4%). Podkreślono ogromny rozwój w kraju fotowoltaiki (liczba instalacji w maju 2022 r. wynosiła 1 083 600 szt.) oraz duży potencjał rozwojowy pomp ciepła. Omówiono wybrane dokumenty krajowe mające wpływ na powstawanie nowych źródeł OZE, konieczność ich dostosowania do aktualnych potrzeb, a także wprowadzenia uproszczonych procedur i skrócenia terminów udzielania zezwoleń na inwestycje OZE
{"title":"Udział energii odnawialnej w polskim miksie energetycznym w odniesieniu do innych krajów","authors":"M. Ciechanowska","doi":"10.18668/ng.2022.12.07","DOIUrl":"https://doi.org/10.18668/ng.2022.12.07","url":null,"abstract":"W artykule przedstawiono działania Komisji Europejskiej ujęte w planie REPowerEU, mające na celu z jednej strony zapewnienie bezpieczeństwa energetycznego krajów członkowskich UE po agresji Rosji na Ukrainę i nałożeniu sankcji na Rosję, a z drugiej – ograniczenie nasilających się obecnie coraz bardziej negatywnych zmian klimatycznych. Aby przeciwdziałać tym zmianom, koniecznością jest odejście od wykorzystywania paliw kopalnych na rzecz odnawialnych źródeł energii (OZE). Scharakteryzowano udział energii OZE w bilansach energetycznych wybranych krajów europejskich i pozaeuropejskich poprzez przedstawienie wielkości zainstalowanej mocy energii elektrycznej pochodzącej z poszczególnych typów źródeł energii: wiatru, promieniowania słonecznego, wody, biomasy (biopaliwa stałe, ciekłe i gazowe) oraz z zasobów geotermalnych. Dane te pochodzą z roku 2021 i dotyczą krajów najbardziej zaawansowanych we wdrażaniu technologii OZE. Drugim analizowanym parametrem jest wielkość ciepła wygenerowanego ze źródeł odnawialnych oraz pozyskanego w procesie wysokosprawnej kogeneracji. W rozdziale dotyczącym udziału energii odnawialnej w strukturze polskiej energetyki przedstawiono wyniki z I półrocza 2022 r., wskazujące, że zielona energetyka stanowiła tylko 22,5% całej wyprodukowanej energii, przy największym udziale elektrowni wiatrowych (11,9%) i instalacji fotowoltaicznych (4,4%). Podkreślono ogromny rozwój w kraju fotowoltaiki (liczba instalacji w maju 2022 r. wynosiła 1 083 600 szt.) oraz duży potencjał rozwojowy pomp ciepła. Omówiono wybrane dokumenty krajowe mające wpływ na powstawanie nowych źródeł OZE, konieczność ich dostosowania do aktualnych potrzeb, a także wprowadzenia uproszczonych procedur i skrócenia terminów udzielania zezwoleń na inwestycje OZE","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"29 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83567936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Regardless of the operating conditions, a load acts on the parts of a machine in different directions. These loads in particular determine the required strength and resistance of parts and determine the study and selection of appropriate strength, resistance parameters for the parts. This can be determined by their impact on oilfield equipment and machine parts. Testing is done to determine the static flexibility, flow limit, tensile strength relative to flexibility, strength period limit, and plastic deformation coefficient. In some cases, when the limits of wear of machine parts are equal, elements with a larger coefficient of deformation are more convenient. These regularities should be used in those cases when it is possible to apply the methods of fracture mechanics or when there are direct experimental data on the development of fatigue cracks, which make it possible to carry out a probabilistic assessment of the durability of structural elements at the stage of crack growth and to substantiate the corresponding limitations on the service life of products. For the safety margins of machine parts, the starting points are as follows: longitudinal bending stress in the sleeve of a solid machine part made of a plastic material cannot damage the part. The length of the first crack can be taken to be equal to several millimetres, which is determined by the capabilities of the simplest means of observation, and by the fact that in some cases even a crack of such length can be critical from the point of view of a potential brittle fracture. In this regard, the fatigue resistance characteristics used in such a calculation should correspond to the point at which the first macroscopic crack appears.
{"title":"Methods for calculating the fatigue strength of machine parts","authors":"Mahluqa S. Rahimova, Samira I. Mansurova","doi":"10.18668/ng.2022.12.06","DOIUrl":"https://doi.org/10.18668/ng.2022.12.06","url":null,"abstract":"Regardless of the operating conditions, a load acts on the parts of a machine in different directions. These loads in particular determine the required strength and resistance of parts and determine the study and selection of appropriate strength, resistance parameters for the parts. This can be determined by their impact on oilfield equipment and machine parts. Testing is done to determine the static flexibility, flow limit, tensile strength relative to flexibility, strength period limit, and plastic deformation coefficient. In some cases, when the limits of wear of machine parts are equal, elements with a larger coefficient of deformation are more convenient. These regularities should be used in those cases when it is possible to apply the methods of fracture mechanics or when there are direct experimental data on the development of fatigue cracks, which make it possible to carry out a probabilistic assessment of the durability of structural elements at the stage of crack growth and to substantiate the corresponding limitations on the service life of products. For the safety margins of machine parts, the starting points are as follows: longitudinal bending stress in the sleeve of a solid machine part made of a plastic material cannot damage the part. The length of the first crack can be taken to be equal to several millimetres, which is determined by the capabilities of the simplest means of observation, and by the fact that in some cases even a crack of such length can be critical from the point of view of a potential brittle fracture. In this regard, the fatigue resistance characteristics used in such a calculation should correspond to the point at which the first macroscopic crack appears.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"22 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79756966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Celem artykułu było wyodrębnienie stref o korzystniejszych parametrach zbiornikowych na podstawie analizy atrybutów sejsmicznych obliczanych z inwersji sejsmicznej w połączeniu z danymi otworowymi. Obliczenia przeprowadzono na wolumenie sejsmicznym ze zdjęcia 3D usytuowanego w środkowej części przedgórza Karpat. Przedmiotem badań była stropowa część kompleksu węglanowego górnej jury. Do identyfikacji stref o preferowanych parametrach wykorzystane zostały wykresy krzyżowe atrybutów impedancji fali podłużnej względem Lambda-Rho (Zp – λρ) oraz Lambda-Rho względem Mu-Rho (λρ – μρ). W obliczeniach wykorzystano opcję horizon probe dostępną w module Geobody Interpretation oprogramowania Petrel. Na podstawie otrzymanych wyników można stwierdzić, że najlepsze dopasowanie obrazu na przekrojach sejsmicznych z profilowaniem porowatości (PHI) w otworze G-4 uzyskano dla wariantu obliczeń Lambda-Rho vs. Mu-Rho, w którym w obrębie wyodrębnionych stref o lepszych parametrach zbiornikowych wydzielono trzy klasy zakresów wartości. Pozwoliło to również w lepszym stopniu zwizualizować zmienność analizowanych parametrów. Wyniki przeprowadzonych badań wskazują, że utwory węglanowe górnej jury w obszarze badań mają zróżnicowane parametry zbiornikowe, przy czym strefy o lepszych własnościach zlokalizowane są głównie w stropowej części tego kompleksu. Generalnie rejon o lepszym rozwoju własności zbiornikowych znajduje się na północny zachód od analizowanego otworu G-4. Można przypuszczać, że jest to związane z obecnością w tym rejonie regionalnych dyslokacji, wokół których doszło do rozwoju szczelinowatości. Najprawdopodobniej dodatkowym czynnikiem odpowiedzialnym za wzrost porowatości w tej strefie jest powierzchnia krasowa, rozwinięta bezpośrednio w stropie utworów jury. Prezentowana metodyka może znaleźć zastosowanie nie tylko do bezpośredniej identyfikacji poziomów skał zbiornikowych o preferowanych parametrach, ale może być też szeroko wykorzystywana w różnego typu analizach i modelowaniach przestrzennych.
{"title":"Detekcja stref o lepszych parametrach zbiornikowych na podstawie atrybutów obliczanych z inwersji sejsmicznej","authors":"R. Bartoń, A. Urbaniec, Kinga Filipowska-Jeziorek","doi":"10.18668/ng.2022.12.01","DOIUrl":"https://doi.org/10.18668/ng.2022.12.01","url":null,"abstract":"Celem artykułu było wyodrębnienie stref o korzystniejszych parametrach zbiornikowych na podstawie analizy atrybutów sejsmicznych obliczanych z inwersji sejsmicznej w połączeniu z danymi otworowymi. Obliczenia przeprowadzono na wolumenie sejsmicznym ze zdjęcia 3D usytuowanego w środkowej części przedgórza Karpat. Przedmiotem badań była stropowa część kompleksu węglanowego górnej jury. Do identyfikacji stref o preferowanych parametrach wykorzystane zostały wykresy krzyżowe atrybutów impedancji fali podłużnej względem Lambda-Rho (Zp – λρ) oraz Lambda-Rho względem Mu-Rho (λρ – μρ). W obliczeniach wykorzystano opcję horizon probe dostępną w module Geobody Interpretation oprogramowania Petrel. Na podstawie otrzymanych wyników można stwierdzić, że najlepsze dopasowanie obrazu na przekrojach sejsmicznych z profilowaniem porowatości (PHI) w otworze G-4 uzyskano dla wariantu obliczeń Lambda-Rho vs. Mu-Rho, w którym w obrębie wyodrębnionych stref o lepszych parametrach zbiornikowych wydzielono trzy klasy zakresów wartości. Pozwoliło to również w lepszym stopniu zwizualizować zmienność analizowanych parametrów. Wyniki przeprowadzonych badań wskazują, że utwory węglanowe górnej jury w obszarze badań mają zróżnicowane parametry zbiornikowe, przy czym strefy o lepszych własnościach zlokalizowane są głównie w stropowej części tego kompleksu. Generalnie rejon o lepszym rozwoju własności zbiornikowych znajduje się na północny zachód od analizowanego otworu G-4. Można przypuszczać, że jest to związane z obecnością w tym rejonie regionalnych dyslokacji, wokół których doszło do rozwoju szczelinowatości. Najprawdopodobniej dodatkowym czynnikiem odpowiedzialnym za wzrost porowatości w tej strefie jest powierzchnia krasowa, rozwinięta bezpośrednio w stropie utworów jury. Prezentowana metodyka może znaleźć zastosowanie nie tylko do bezpośredniej identyfikacji poziomów skał zbiornikowych o preferowanych parametrach, ale może być też szeroko wykorzystywana w różnego typu analizach i modelowaniach przestrzennych.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"14 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82017612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biogaz stanowi alternatywę energetyczną dla konwencjonalnych paliw gazowych. Wzrost produkcji tego gazu oraz zwiększenie wykorzystania potencjału sektora biogazowego w Polsce może mieć znaczący wkład w zwiększenie bezpieczeństwa energetycznego kraju poprzez dywersyfikację źródeł energii. W niniejszym artykule skoncentrowano się wyłącznie na biogazie rolniczym i przedstawiono najnowsze dane dotyczące m.in. liczby biogazowni rolniczych oraz rocznej wydajności instalacji do wytwarzania tego gazu. Warto zauważyć, że liczba biogazowni rolniczych w Polsce systematycznie wzrasta. Na początku roku 2021 było ich 116, na koniec 2021 roku w rejestrze wytwórców biogazu rolniczego KOWR wpisanych było już 128 instalacji biogazowych, natomiast aktualna na koniec 2022 roku liczba biogazowni rolniczych wynosi 141. Wzrost liczby instalacji biogazowych pociąga za sobą wzrost możliwości produkcji tego gazu. Instalacje zarejestrowane na koniec 2021 roku pozwalały na wytworzenie ponad 513 mln m3 biogazu rolniczego rocznie. Obecnie sumaryczna roczna wydajność instalacji biogazowych pozwala na wytworzenie ponad 569 mln m3 biogazu rolniczego. Wszystkie zarejestrowane w Polsce biogazownie rolnicze wykorzystują produkowany biogaz do wytwarzania ciepła i energii elektrycznej w skojarzeniu. Sumaryczna moc zainstalowana elektryczna wszystkich biogazowni rolniczych na koniec 2022 roku wynosi 139,5 MWe. W artykule przedstawiono również wyniki analiz w zakresie stosowanych w Polsce substratów do produkcji biogazu rolniczego oraz metod jego oczyszczania, a także wpływu użytej metody oczyszczania na jakość, parametry fizykochemiczne oraz możliwość wykorzystania powstającego gazu. Do produkcji biogazu rolniczego w większości stosowana jest biomasa roślinna w połączeniu z inną biomasą oraz ewentualnie kiszonka. Wykorzystywane w biogazowniach rolniczych procesy oczyszczania biogazu to przede wszystkim odsiarczanie i osuszanie. Przeprowadzone badania pokazały również, że parametry energetyczne biogazów rolniczych pochodzących z różnych biogazowni charakteryzują się niewielkim zróżnicowaniem, co jest istotne ze względu na fakt, że stabilność parametrów energetycznych biogazu stanowi ważny czynnik wpływający na możliwość jego efektywnego wykorzystania.
{"title":"Biogaz rolniczy w Polsce – produkcja i możliwości wykorzystania","authors":"J. Holewa-Rataj, E. Kukulska-Zając","doi":"10.18668/ng.2022.12.03","DOIUrl":"https://doi.org/10.18668/ng.2022.12.03","url":null,"abstract":"Biogaz stanowi alternatywę energetyczną dla konwencjonalnych paliw gazowych. Wzrost produkcji tego gazu oraz zwiększenie wykorzystania potencjału sektora biogazowego w Polsce może mieć znaczący wkład w zwiększenie bezpieczeństwa energetycznego kraju poprzez dywersyfikację źródeł energii. W niniejszym artykule skoncentrowano się wyłącznie na biogazie rolniczym i przedstawiono najnowsze dane dotyczące m.in. liczby biogazowni rolniczych oraz rocznej wydajności instalacji do wytwarzania tego gazu. Warto zauważyć, że liczba biogazowni rolniczych w Polsce systematycznie wzrasta. Na początku roku 2021 było ich 116, na koniec 2021 roku w rejestrze wytwórców biogazu rolniczego KOWR wpisanych było już 128 instalacji biogazowych, natomiast aktualna na koniec 2022 roku liczba biogazowni rolniczych wynosi 141. Wzrost liczby instalacji biogazowych pociąga za sobą wzrost możliwości produkcji tego gazu. Instalacje zarejestrowane na koniec 2021 roku pozwalały na wytworzenie ponad 513 mln m3 biogazu rolniczego rocznie. Obecnie sumaryczna roczna wydajność instalacji biogazowych pozwala na wytworzenie ponad 569 mln m3 biogazu rolniczego. Wszystkie zarejestrowane w Polsce biogazownie rolnicze wykorzystują produkowany biogaz do wytwarzania ciepła i energii elektrycznej w skojarzeniu. Sumaryczna moc zainstalowana elektryczna wszystkich biogazowni rolniczych na koniec 2022 roku wynosi 139,5 MWe. W artykule przedstawiono również wyniki analiz w zakresie stosowanych w Polsce substratów do produkcji biogazu rolniczego oraz metod jego oczyszczania, a także wpływu użytej metody oczyszczania na jakość, parametry fizykochemiczne oraz możliwość wykorzystania powstającego gazu. Do produkcji biogazu rolniczego w większości stosowana jest biomasa roślinna w połączeniu z inną biomasą oraz ewentualnie kiszonka. Wykorzystywane w biogazowniach rolniczych procesy oczyszczania biogazu to przede wszystkim odsiarczanie i osuszanie. Przeprowadzone badania pokazały również, że parametry energetyczne biogazów rolniczych pochodzących z różnych biogazowni charakteryzują się niewielkim zróżnicowaniem, co jest istotne ze względu na fakt, że stabilność parametrów energetycznych biogazu stanowi ważny czynnik wpływający na możliwość jego efektywnego wykorzystania.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"46 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84336292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Światowe Konferencje Gazownicze, organizowane przez Międzynarodową Unię Gazowniczą (IGU) od 1931 roku, są największymi i najważniejszymi spotkaniami branży gazowniczej na świecie. Ostatnia, 28. Światowa Konferencja Gazownicza odbyła się w Daegu w Korei Południowej w dniach 23–27 maja 2022 r. Motto konferencji brzmiało: Zrównoważona przyszłość napędzana gazem. Konferencji towarzyszyła wystawa prezentująca najnowsze technologie i trendy w globalnym przemyśle gazowniczym. W niniejszym artykule przedstawiono krótkie podsumowanie tej konferencji i wystawy. Pomimo epidemii COVID-19 i skomplikowanej sytuacji politycznej na świecie w konferencji wzięło udział 293 prelegentów, 141 wystawców oraz 9500 gości z 72 krajów, w tym z Polski. Na 28. Światowej Wystawie Gazowniczej Polska była reprezentowana przez PGNiG, a na konferencji zaprezentowano trzy polskie referaty. Dominującym tematem konferencji były: zrównoważona transformacja energetyczna w kierunku neutralności węglowej, redukcja emisji zanieczyszczeń, a także oczekiwana rosnąca rola wodoru w przyszłych systemach energetycznych. Gaz ziemny uznano za część niskoemisyjnej przyszłości w sektorze energetycznym. Jednak realna transformacja energetyczna na świecie wymaga nowych technologii, które są obecnie rozwijane. Można przewidywać, że paliwa kopalne, zwłaszcza gaz, pozostaną ważnym elementem globalnego systemu energetycznego co najmniej do 2050 roku. Na konferencji osiągnięto konsensus, że zrównoważony rozwój gazownictwa ziemnego i technologii wodorowych przyspieszy nadejście ery niskoemisyjnej, a gaz jest nie tylko paliwem przejściowym, ale także podstawowym paliwem dla przyszłego rozwoju.
{"title":"Kierunki rozwoju światowego gazownictwa w świetle obrad 28. Światowej Konferencji Gazowniczej w Daegu","authors":"J. Stopa","doi":"10.18668/ng.2022.12.05","DOIUrl":"https://doi.org/10.18668/ng.2022.12.05","url":null,"abstract":"Światowe Konferencje Gazownicze, organizowane przez Międzynarodową Unię Gazowniczą (IGU) od 1931 roku, są największymi i najważniejszymi spotkaniami branży gazowniczej na świecie. Ostatnia, 28. Światowa Konferencja Gazownicza odbyła się w Daegu w Korei Południowej w dniach 23–27 maja 2022 r. Motto konferencji brzmiało: Zrównoważona przyszłość napędzana gazem. Konferencji towarzyszyła wystawa prezentująca najnowsze technologie i trendy w globalnym przemyśle gazowniczym. W niniejszym artykule przedstawiono krótkie podsumowanie tej konferencji i wystawy. Pomimo epidemii COVID-19 i skomplikowanej sytuacji politycznej na świecie w konferencji wzięło udział 293 prelegentów, 141 wystawców oraz 9500 gości z 72 krajów, w tym z Polski. Na 28. Światowej Wystawie Gazowniczej Polska była reprezentowana przez PGNiG, a na konferencji zaprezentowano trzy polskie referaty. Dominującym tematem konferencji były: zrównoważona transformacja energetyczna w kierunku neutralności węglowej, redukcja emisji zanieczyszczeń, a także oczekiwana rosnąca rola wodoru w przyszłych systemach energetycznych. Gaz ziemny uznano za część niskoemisyjnej przyszłości w sektorze energetycznym. Jednak realna transformacja energetyczna na świecie wymaga nowych technologii, które są obecnie rozwijane. Można przewidywać, że paliwa kopalne, zwłaszcza gaz, pozostaną ważnym elementem globalnego systemu energetycznego co najmniej do 2050 roku. Na konferencji osiągnięto konsensus, że zrównoważony rozwój gazownictwa ziemnego i technologii wodorowych przyspieszy nadejście ery niskoemisyjnej, a gaz jest nie tylko paliwem przejściowym, ale także podstawowym paliwem dla przyszłego rozwoju.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"23 4 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88063794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W artykule przedstawiono wyniki badań jakości biogazu rolniczego produkowanego w Polsce. Uzyskane wyniki odniesiono do dostępnych danych publikowanych w tym zakresie w literaturze, zarówno krajowej, jak i światowej. Próbki oczyszczonego biogazu rolniczego pobrano do odpowiednich pojemników w 11 wybranych do badań biogazowniach, zachowując ich reprezentatywność w stosunku do wszystkich biogazowni rolniczych w Polsce. Wytypowane do badań biogazownie rolnicze stanowiły obiekty o zróżnicowanej wielkości, charakterystyce stosowanych substratów oraz różnym zakresie parametrów podlegających uzdatnieniu. W biogazowniach tych prowadzono głównie procesy osuszania i odsiarczania produkowanego biogazu rolniczego, a w przypadku jednej z biogazowni usuwane były również siloksany. Oznaczenie zawartości tlenku węgla(II), amoniaku oraz parametrów związanych z wilgotnością biogazu przeprowadzono na miejscu ze względu na możliwe zmiany składu gazu, wynikające z jego transportu. Pozostałe parametry jakościowe biogazu wyznaczono w laboratorium. W badanych próbkach biogazu rolniczego oznaczono zawartość takich substancji jak: wodór, azot, tlen, tlenek węgla(IV), metan, węglowodory C2–C5, siarkowodór, tiole (merkaptany), siloksany, alkohole (takie jak metanol, etanol oraz i-propanol), wybrane węglowodory jedno- oraz wielopierścieniowe, a także organiczne i nieorganiczne chlorki i fluorki. Badania zostały przeprowadzone głównie z wykorzystaniem metody chromatografii gazowej. Jedynie w przypadku oznaczania zawartości organicznych i nieorganicznych chlorków i fluorków wykorzystano metodę chromatografii jonowej, a w przypadku oznaczania wielopierścieniowych węglowodorów aromatycznych zastosowano metodę wysokosprawnej chromatografii cieczowej. Uzyskane wyniki badań wykazały, że zmienność składu biogazu rolniczego produkowanego w Polsce jest znacznie mniejsza niż opisywana w literaturze (zarówno krajowej, jak i światowej), co przyczynia się do stabilności jego parametrów energetycznych. Należy dodać, że oznaczona podczas badań zawartość zanieczyszczeń mogących występować w biogazach rolniczych była również znacznie niższa, niż podaje literatura.
{"title":"Jakość biogazu rolniczego w Polsce na tle doniesień literaturowych","authors":"J. Holewa-Rataj, E. Kukulska-Zając","doi":"10.18668/ng.2022.12.04","DOIUrl":"https://doi.org/10.18668/ng.2022.12.04","url":null,"abstract":"W artykule przedstawiono wyniki badań jakości biogazu rolniczego produkowanego w Polsce. Uzyskane wyniki odniesiono do dostępnych danych publikowanych w tym zakresie w literaturze, zarówno krajowej, jak i światowej. Próbki oczyszczonego biogazu rolniczego pobrano do odpowiednich pojemników w 11 wybranych do badań biogazowniach, zachowując ich reprezentatywność w stosunku do wszystkich biogazowni rolniczych w Polsce. Wytypowane do badań biogazownie rolnicze stanowiły obiekty o zróżnicowanej wielkości, charakterystyce stosowanych substratów oraz różnym zakresie parametrów podlegających uzdatnieniu. W biogazowniach tych prowadzono głównie procesy osuszania i odsiarczania produkowanego biogazu rolniczego, a w przypadku jednej z biogazowni usuwane były również siloksany. Oznaczenie zawartości tlenku węgla(II), amoniaku oraz parametrów związanych z wilgotnością biogazu przeprowadzono na miejscu ze względu na możliwe zmiany składu gazu, wynikające z jego transportu. Pozostałe parametry jakościowe biogazu wyznaczono w laboratorium. W badanych próbkach biogazu rolniczego oznaczono zawartość takich substancji jak: wodór, azot, tlen, tlenek węgla(IV), metan, węglowodory C2–C5, siarkowodór, tiole (merkaptany), siloksany, alkohole (takie jak metanol, etanol oraz i-propanol), wybrane węglowodory jedno- oraz wielopierścieniowe, a także organiczne i nieorganiczne chlorki i fluorki. Badania zostały przeprowadzone głównie z wykorzystaniem metody chromatografii gazowej. Jedynie w przypadku oznaczania zawartości organicznych i nieorganicznych chlorków i fluorków wykorzystano metodę chromatografii jonowej, a w przypadku oznaczania wielopierścieniowych węglowodorów aromatycznych zastosowano metodę wysokosprawnej chromatografii cieczowej. Uzyskane wyniki badań wykazały, że zmienność składu biogazu rolniczego produkowanego w Polsce jest znacznie mniejsza niż opisywana w literaturze (zarówno krajowej, jak i światowej), co przyczynia się do stabilności jego parametrów energetycznych. Należy dodać, że oznaczona podczas badań zawartość zanieczyszczeń mogących występować w biogazach rolniczych była również znacznie niższa, niż podaje literatura.","PeriodicalId":45266,"journal":{"name":"Nafta-Gaz","volume":"43 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77179185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}