首页 > 最新文献

Kunstliche Intelligenz最新文献

英文 中文
Auf der Jagd nach neuen Medikamenten 继续找药
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_16
David H. Freedman
{"title":"Auf der Jagd nach neuen Medikamenten","authors":"David H. Freedman","doi":"10.1007/978-3-662-62492-0_16","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_16","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"61 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeepMind will Problem der Proteinfaltung gelöst haben DeepMind想通过这种蛋白质折叠解决问题
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_17
Eva Wolfangel
{"title":"DeepMind will Problem der Proteinfaltung gelöst haben","authors":"Eva Wolfangel","doi":"10.1007/978-3-662-62492-0_17","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_17","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maschinen das Träumen lehren 机器教你做梦
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_4
Anna von Hopffgarten
{"title":"Maschinen das Träumen lehren","authors":"Anna von Hopffgarten","doi":"10.1007/978-3-662-62492-0_4","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_4","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"27 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
News. 新闻。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 Epub Date: 2021-09-02 DOI: 10.1007/s13218-021-00741-7
{"title":"News.","authors":"","doi":"10.1007/s13218-021-00741-7","DOIUrl":"https://doi.org/10.1007/s13218-021-00741-7","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"36 1","pages":"109-112"},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39394626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lernen wie ein Kind 儿童学到了什么?
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_3
Alison Gopnik
{"title":"Lernen wie ein Kind","authors":"Alison Gopnik","doi":"10.1007/978-3-662-62492-0_3","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_3","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"4 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schlau, schlauer, am schlausten: AlphaGo Zero 聪明,更聪明,最聪明:AlphaGo Zero
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_11
Janosch Deeg
{"title":"Schlau, schlauer, am schlausten: AlphaGo Zero","authors":"Janosch Deeg","doi":"10.1007/978-3-662-62492-0_11","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_11","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wie gefährlich ist künstliche Intelligenz? 人工智能有多危险?
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_20
A. Burkert
{"title":"Wie gefährlich ist künstliche Intelligenz?","authors":"A. Burkert","doi":"10.1007/978-3-662-62492-0_20","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_20","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fehler haben Konsequenzen für das Leben echter Menschen 错误会影响真人的生活
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-662-62492-0_24
Eva Wolfangel
{"title":"Fehler haben Konsequenzen für das Leben echter Menschen","authors":"Eva Wolfangel","doi":"10.1007/978-3-662-62492-0_24","DOIUrl":"https://doi.org/10.1007/978-3-662-62492-0_24","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51381860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Framework for Learning Event Sequences and Explaining Detected Anomalies in a Smart Home Environment. 学习事件序列和解释智能家居环境中检测到的异常的框架。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/s13218-022-00775-5
Justin Baudisch, Birte Richter, Thorsten Jungeblut

This paper presents a framework for learning event sequences for anomaly detection in a smart home environment. It addresses environment conditions, device grouping, system performance and explainability of anomalies. Our method models user behavior as sequences of events, triggered by interaction of the home residents with the Internet of Things (IoT) devices. Based on a given set of recorded event sequences, the system can learn the habitual behavior of the residents. An anomaly is described as deviation from that normal behavior, previously learned by the system. One key feature of our framework is the explainability of detected anomalies, which is implemented through a simple rule analysis.

本文提出了一个学习事件序列的框架,用于智能家居环境中的异常检测。它涉及环境条件、设备分组、系统性能和异常的可解释性。我们的方法将用户行为建模为一系列事件,由家庭居民与物联网(IoT)设备的交互触发。基于一组给定的记录事件序列,系统可以学习居民的习惯行为。异常被描述为系统先前学习到的对正常行为的偏离。我们框架的一个关键特征是检测到的异常的可解释性,这是通过简单的规则分析实现的。
{"title":"A Framework for Learning Event Sequences and Explaining Detected Anomalies in a Smart Home Environment.","authors":"Justin Baudisch,&nbsp;Birte Richter,&nbsp;Thorsten Jungeblut","doi":"10.1007/s13218-022-00775-5","DOIUrl":"https://doi.org/10.1007/s13218-022-00775-5","url":null,"abstract":"<p><p>This paper presents a framework for learning event sequences for anomaly detection in a smart home environment. It addresses environment conditions, device grouping, system performance and explainability of anomalies. Our method models user behavior as sequences of events, triggered by interaction of the home residents with the Internet of Things (IoT) devices. Based on a given set of recorded event sequences, the system can learn the habitual behavior of the residents. An anomaly is described as deviation from that normal behavior, previously learned by the system. One key feature of our framework is the explainability of detected anomalies, which is implemented through a simple rule analysis.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"36 3-4","pages":"259-266"},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10814177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs. 图神经网络概念验证的解释生成:在相关度排序子图上学习符号谓词的研究。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/s13218-022-00781-7
Bettina Finzel, Anna Saranti, Alessa Angerschmid, David Tafler, Bastian Pfeifer, Andreas Holzinger

Graph Neural Networks (GNN) show good performance in relational data classification. However, their contribution to concept learning and the validation of their output from an application domain's and user's perspective have not been thoroughly studied. We argue that combining symbolic learning methods, such as Inductive Logic Programming (ILP), with statistical machine learning methods, especially GNNs, is an essential forward-looking step to perform powerful and validatable relational concept learning. In this contribution, we introduce a benchmark for the conceptual validation of GNN classification outputs. It consists of the symbolic representations of symmetric and non-symmetric figures that are taken from a well-known Kandinsky Pattern data set. We further provide a novel validation framework that can be used to generate comprehensible explanations with ILP on top of the relevance output of GNN explainers and human-expected relevance for concepts learned by GNNs. Our experiments conducted on our benchmark data set demonstrate that it is possible to extract symbolic concepts from the most relevant explanations that are representative of what a GNN has learned. Our findings open up a variety of avenues for future research on validatable explanations for GNNs.

图神经网络(GNN)在关系数据分类中表现出良好的性能。然而,它们对概念学习的贡献以及从应用领域和用户的角度验证它们的输出还没有得到彻底的研究。我们认为,将符号学习方法(如归纳逻辑编程(ILP))与统计机器学习方法(特别是gnn)相结合,是执行强大且可验证的关系概念学习的重要前瞻性步骤。在本文中,我们引入了GNN分类输出概念验证的基准。它由取自著名的康定斯基图案数据集的对称和非对称图形的符号表示组成。我们进一步提供了一个新的验证框架,该框架可用于在GNN解释器的相关输出和GNN学习的概念的人类期望相关性的基础上,使用ILP生成可理解的解释。我们在基准数据集上进行的实验表明,可以从最相关的解释中提取符号概念,这些解释代表了GNN所学的内容。我们的发现为未来研究gnn的可验证解释开辟了多种途径。
{"title":"Generating Explanations for Conceptual Validation of Graph Neural Networks: An Investigation of Symbolic Predicates Learned on Relevance-Ranked Sub-Graphs.","authors":"Bettina Finzel,&nbsp;Anna Saranti,&nbsp;Alessa Angerschmid,&nbsp;David Tafler,&nbsp;Bastian Pfeifer,&nbsp;Andreas Holzinger","doi":"10.1007/s13218-022-00781-7","DOIUrl":"https://doi.org/10.1007/s13218-022-00781-7","url":null,"abstract":"<p><p>Graph Neural Networks (GNN) show good performance in relational data classification. However, their contribution to concept learning and the validation of their output from an application domain's and user's perspective have not been thoroughly studied. We argue that combining symbolic learning methods, such as Inductive Logic Programming (ILP), with statistical machine learning methods, especially GNNs, is an essential forward-looking step to perform powerful and validatable relational concept learning. In this contribution, we introduce a benchmark for the conceptual validation of GNN classification outputs. It consists of the symbolic representations of symmetric and non-symmetric figures that are taken from a well-known Kandinsky Pattern data set. We further provide a novel validation framework that can be used to generate comprehensible explanations with ILP on top of the relevance output of GNN explainers and human-expected relevance for concepts learned by GNNs. Our experiments conducted on our benchmark data set demonstrate that it is possible to extract symbolic concepts from the most relevant explanations that are representative of what a GNN has learned. Our findings open up a variety of avenues for future research on validatable explanations for GNNs.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"36 3-4","pages":"271-285"},"PeriodicalIF":2.9,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9794543/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10817409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
期刊
Kunstliche Intelligenz
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1