首页 > 最新文献

Kunstliche Intelligenz最新文献

英文 中文
Ontology-Mediated Querying with Horn Description Logics. 基于Horn描述逻辑的本体中介查询。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-06-21 DOI: 10.1007/s13218-020-00674-7
Leif Sabellek

An ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classifying complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced and investigated.

本体中介查询(OMQ)由与本体配对的数据库查询组成。在数据库上求值时,OMQ不仅返回数据库中已经存在的答案,还返回使用本体规则通过逻辑推理获得的答案。关于与omq相关的问题的复杂性,有许多悬而未决的问题。在实践中使用本体的激励下,从未在本体上下文中考虑过的新推理问题变得相关,因为它们可以提高本体丰富系统的可用性。本文研究了本体中介查询中出现的各种推理问题,并研究了这些问题的计算复杂性。我们将重点放在Horn描述逻辑中表述的本体上,这是实践中普遍选择的本体。特别地,本文基于EL本体和连接查询对OMQ的复杂性和可重写性问题进行了完全分类,给出了OMQ评估数据复杂性的结果。在此基础上,介绍并研究了基于本体的数据访问中的实例查询问题、可表达性和验证性问题。
{"title":"Ontology-Mediated Querying with Horn Description Logics.","authors":"Leif Sabellek","doi":"10.1007/s13218-020-00674-7","DOIUrl":"https://doi.org/10.1007/s13218-020-00674-7","url":null,"abstract":"<p><p>An ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classifying complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced and investigated.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 4","pages":"533-537"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-020-00674-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38738074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Tiefes Lernen kann komplexe Zusammenhänge erfassen 深入学习能理解复杂的因素
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 DOI: 10.1007/978-3-658-30211-5_4
Gerhard Paass, D. Hecker
{"title":"Tiefes Lernen kann komplexe Zusammenhänge erfassen","authors":"Gerhard Paass, D. Hecker","doi":"10.1007/978-3-658-30211-5_4","DOIUrl":"https://doi.org/10.1007/978-3-658-30211-5_4","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51271663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI in Medicine, Covid-19 and Springer Nature's Open Access Agreement. 医学中的人工智能,Covid-19和施普林格自然的开放获取协议。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-06-03 DOI: 10.1007/s13218-020-00661-y
Daniel Sonntag
{"title":"AI in Medicine, Covid-19 and Springer Nature's Open Access Agreement.","authors":"Daniel Sonntag","doi":"10.1007/s13218-020-00661-y","DOIUrl":"https://doi.org/10.1007/s13218-020-00661-y","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 2","pages":"123-125"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-020-00661-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38031134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Special Issue on Ontologies and Data Management: Part I. 本体论和数据管理特刊:第一部分。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-09-16 DOI: 10.1007/s13218-020-00682-7
Thomas Schneider, Mantas Šimkus
{"title":"Special Issue on Ontologies and Data Management: Part I.","authors":"Thomas Schneider,&nbsp;Mantas Šimkus","doi":"10.1007/s13218-020-00682-7","DOIUrl":"https://doi.org/10.1007/s13218-020-00682-7","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 3","pages":"287-289"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-020-00682-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38404251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fazit und Ausblick 结论与前景
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 DOI: 10.1007/978-3-658-30506-2_12
Sabine von Oelffen, U. Bär
{"title":"Fazit und Ausblick","authors":"Sabine von Oelffen, U. Bär","doi":"10.1007/978-3-658-30506-2_12","DOIUrl":"https://doi.org/10.1007/978-3-658-30506-2_12","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51271844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI for Ancient Games: Report on the Digital Ludeme Project. 古代游戏AI: Digital Ludeme项目报告
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2019-07-01 DOI: 10.1007/s13218-019-00600-6
Cameron Browne

This report summarises the Digital Ludeme Project, a recently launched 5-year research project being conducted at Maastricht University. This computational study of the world's traditional strategy games seeks to improve our understanding of early games, their development, and their role in the spread of related mathematical ideas throughout recorded human history.

这份报告总结了数字Ludeme项目,这是一个最近在马斯特里赫特大学开展的为期5年的研究项目。对世界上传统策略游戏的计算研究旨在提高我们对早期游戏的理解,它们的发展,以及它们在人类历史上相关数学思想传播中的作用。
{"title":"AI for Ancient Games: Report on the Digital Ludeme Project.","authors":"Cameron Browne","doi":"10.1007/s13218-019-00600-6","DOIUrl":"https://doi.org/10.1007/s13218-019-00600-6","url":null,"abstract":"<p><p>This report summarises the Digital Ludeme Project, a recently launched 5-year research project being conducted at Maastricht University. This computational study of the world's traditional strategy games seeks to improve our understanding of early games, their development, and their role in the spread of related mathematical ideas throughout recorded human history.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 1","pages":"89-93"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-019-00600-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37912904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Ontologies and Data Management: A Brief Survey. 本体论与数据管理:本体论与数据管理:简要调查。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-08-13 DOI: 10.1007/s13218-020-00686-3
Thomas Schneider, Mantas Šimkus

Information systems have to deal with an increasing amount of data that is heterogeneous, unstructured, or incomplete. In order to align and complete data, systems may rely on taxonomies and background knowledge that are provided in the form of an ontology. This survey gives an overview of research work on the use of ontologies for accessing incomplete and/or heterogeneous data.

信息系统必须处理越来越多的异构、非结构化或不完整数据。为了调整和完善数据,系统可以依赖以本体形式提供的分类标准和背景知识。本调查概述了使用本体获取不完整和/或异构数据的研究工作。
{"title":"Ontologies and Data Management: A Brief Survey.","authors":"Thomas Schneider, Mantas Šimkus","doi":"10.1007/s13218-020-00686-3","DOIUrl":"10.1007/s13218-020-00686-3","url":null,"abstract":"<p><p>Information systems have to deal with an increasing amount of data that is heterogeneous, unstructured, or incomplete. In order to align and complete data, systems may rely on taxonomies and background knowledge that are provided in the form of an ontology. This survey gives an overview of research work on the use of ontologies for accessing incomplete and/or heterogeneous data.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 3","pages":"329-353"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38442163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rewriting Approaches for Ontology-Mediated Query Answering. 以本体为媒介的查询应答重写方法。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-06-11 DOI: 10.1007/s13218-020-00671-w
Shqiponja Ahmetaj

A most promising approach to answering queries in ontology-based data access (OBDA) is through query rewriting. In this paper we present novel rewriting approaches for several extensions of OBDA. The goal is to understand their relative expressiveness and to pave the way for efficient query answering algorithms.

在基于本体的数据访问(OBDA)中,回答查询最有前途的方法是查询重写。在本文中,我们为 OBDA 的几个扩展提出了新颖的重写方法。目的是了解它们的相对表达能力,并为高效的查询回答算法铺平道路。
{"title":"Rewriting Approaches for Ontology-Mediated Query Answering.","authors":"Shqiponja Ahmetaj","doi":"10.1007/s13218-020-00671-w","DOIUrl":"10.1007/s13218-020-00671-w","url":null,"abstract":"<p><p>A most promising approach to answering queries in ontology-based data access (OBDA) is through query rewriting. In this paper we present novel rewriting approaches for several extensions of OBDA. The goal is to understand their relative expressiveness and to pave the way for efficient query answering algorithms.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 4","pages":"523-526"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38738073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the Quality of Explanations: The System Causability Scale (SCS): Comparing Human and Machine Explanations. 测量解释的质量:系统因果性量表(SCS):比较人类和机器的解释。
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 Epub Date: 2020-01-21 DOI: 10.1007/s13218-020-00636-z
Andreas Holzinger, André Carrington, Heimo Müller

Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow problem solving automatically without any human intervention. Autonomous approaches can be very convenient. However, in certain domains, e.g., in the medical domain, it is necessary to enable a domain expert to understand, why an algorithm came up with a certain result. Consequently, the field of Explainable AI (xAI) rapidly gained interest worldwide in various domains, particularly in medicine. Explainable AI studies transparency and traceability of opaque AI/ML and there are already a huge variety of methods. For example with layer-wise relevance propagation relevant parts of inputs to, and representations in, a neural network which caused a result, can be highlighted. This is a first important step to ensure that end users, e.g., medical professionals, assume responsibility for decision making with AI/ML and of interest to professionals and regulators. Interactive ML adds the component of human expertise to AI/ML processes by enabling them to re-enact and retrace AI/ML results, e.g. let them check it for plausibility. This requires new human-AI interfaces for explainable AI. In order to build effective and efficient interactive human-AI interfaces we have to deal with the question of how to evaluate the quality of explanations given by an explainable AI system. In this paper we introduce our System Causability Scale to measure the quality of explanations. It is based on our notion of Causability (Holzinger et al. in Wiley Interdiscip Rev Data Min Knowl Discov 9(4), 2019) combined with concepts adapted from a widely-accepted usability scale.

最近人工智能(AI)和机器学习(ML)的成功使问题自动解决,无需任何人为干预。自主方法非常方便。然而,在某些领域,例如在医学领域,有必要使领域专家能够理解为什么算法会产生特定的结果。因此,可解释人工智能(xAI)领域迅速引起了全世界各个领域的兴趣,特别是在医学领域。可解释的AI研究不透明AI/ML的透明度和可追溯性,并且已经有各种各样的方法。例如,通过分层相关传播,可以突出显示导致结果的神经网络输入的相关部分和表示。这是确保最终用户(例如医疗专业人员)承担使用人工智能/机器学习做出决策的责任以及专业人员和监管机构感兴趣的第一步。交互式ML将人类专业知识的组成部分添加到AI/ML过程中,使他们能够重新制定和追溯AI/ML结果,例如让他们检查其合理性。这就需要新的人机界面来实现可解释的AI。为了构建有效和高效的人机交互界面,我们必须处理如何评估可解释的人工智能系统给出的解释质量的问题。在本文中,我们引入了我们的系统因果性量表来衡量解释的质量。它基于我们的因果性概念(Holzinger等人在Wiley interdisp Rev Data Min Knowl discoverv 9(4), 2019)中结合了广泛接受的可用性量表的概念。
{"title":"Measuring the Quality of Explanations: The System Causability Scale (SCS): Comparing Human and Machine Explanations.","authors":"Andreas Holzinger,&nbsp;André Carrington,&nbsp;Heimo Müller","doi":"10.1007/s13218-020-00636-z","DOIUrl":"https://doi.org/10.1007/s13218-020-00636-z","url":null,"abstract":"<p><p>Recent success in Artificial Intelligence (AI) and Machine Learning (ML) allow problem solving automatically without any human intervention. Autonomous approaches can be very convenient. However, in certain domains, e.g., in the medical domain, it is necessary to enable a domain expert to understand, <i>why</i> an algorithm came up with a certain result. Consequently, the field of Explainable AI (xAI) rapidly gained interest worldwide in various domains, particularly in medicine. Explainable AI studies transparency and traceability of opaque AI/ML and there are already a huge variety of methods. For example with layer-wise relevance propagation relevant parts of inputs to, and representations in, a neural network which caused a result, can be highlighted. This is a first important step to ensure that end users, e.g., medical professionals, assume responsibility for decision making with AI/ML and of interest to professionals and regulators. Interactive ML adds the component of human expertise to AI/ML processes by enabling them to re-enact and retrace AI/ML results, e.g. let them check it for plausibility. This requires new human-AI interfaces for explainable AI. In order to build effective and efficient interactive human-AI interfaces we have to deal with the question of <i>how to evaluate the quality of explanations</i> given by an explainable AI system. In this paper we introduce our System Causability Scale to measure the quality of explanations. It is based on our notion of Causability (Holzinger et al. in Wiley Interdiscip Rev Data Min Knowl Discov 9(4), 2019) combined with concepts adapted from a widely-accepted usability scale.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 2","pages":"193-198"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-020-00636-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38053584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 218
Steuerrechtliche Aspekte Steuerrechtliche方面
IF 2.9 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-01-01 DOI: 10.1007/978-3-658-30506-2_7
U. Bär
{"title":"Steuerrechtliche Aspekte","authors":"U. Bär","doi":"10.1007/978-3-658-30506-2_7","DOIUrl":"https://doi.org/10.1007/978-3-658-30506-2_7","url":null,"abstract":"","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51272593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Kunstliche Intelligenz
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1