{"title":"IEEJ Journal of Industry Applications","authors":"","doi":"10.1541/ieejjia.12.l2_1","DOIUrl":"https://doi.org/10.1541/ieejjia.12.l2_1","url":null,"abstract":"","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136180636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1541/ieejjia.22007327
Tomoshi Otsuki, Daiki Kiribuchi, Chihiro Kasai
The recent increase in residential photovoltaic (PV) power generation has become a major factor in the electricity supply instability. As a result, power balancing at the distribution level is becoming increasingly important. In Japan, storage batteries installed in residential homes along with PV systems has reached nearly 3GW and are expected to contribute to the power system stability. In this paper, we propose a method for a group of residential consumers to participate in the balancing market by managing their total meter value to match the target power. This method consists of the following two stages: bid volume optimization, which optimizes the bid volume based on the past behavior of the consumers, and demand response (DR) dispatch optimization, which quickly determines the dispatch of charging and discharging requests every 5min when DR is requested. Evaluation simulations based on the actual 1-min power data and consumer response model showed that, by aggregating 1600 consumers, the success criteria of the balancing market can be met. In other words, the total metered power in 1-min and 5-min intervals can be controlled within ±10% of the bid volume against the target power. From these experiments we have shown that the aggregation of as large as 1600 residential consumers has the potential to participate in the balancing market.
{"title":"Potential of Residential Storage Battery Demand Response in Tertiary Balancing Market","authors":"Tomoshi Otsuki, Daiki Kiribuchi, Chihiro Kasai","doi":"10.1541/ieejjia.22007327","DOIUrl":"https://doi.org/10.1541/ieejjia.22007327","url":null,"abstract":"The recent increase in residential photovoltaic (PV) power generation has become a major factor in the electricity supply instability. As a result, power balancing at the distribution level is becoming increasingly important. In Japan, storage batteries installed in residential homes along with PV systems has reached nearly 3GW and are expected to contribute to the power system stability. In this paper, we propose a method for a group of residential consumers to participate in the balancing market by managing their total meter value to match the target power. This method consists of the following two stages: bid volume optimization, which optimizes the bid volume based on the past behavior of the consumers, and demand response (DR) dispatch optimization, which quickly determines the dispatch of charging and discharging requests every 5min when DR is requested. Evaluation simulations based on the actual 1-min power data and consumer response model showed that, by aggregating 1600 consumers, the success criteria of the balancing market can be met. In other words, the total metered power in 1-min and 5-min intervals can be controlled within ±10% of the bid volume against the target power. From these experiments we have shown that the aggregation of as large as 1600 residential consumers has the potential to participate in the balancing market.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"113 1-2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135957214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1541/ieejjia.22000460
Ko Oue, Sota Yano, Shunya Sano, Toshiji Kato, Kaoru Inoue
Grid-forming inverter control plays an important role in ensuring frequency and voltage stability in a microgrid (MG). This paper proposes a novel power and voltage control in the αβ domain. The proposed method includes two control loops; an outer loop for power droop control and an inner loop for output voltage control. With the proposed controller, active and reactive powers can be controlled according to simple complex power control principles described only in the αβ-domain. Controller gain tuning for both the outer droop and the inner voltage regulator is also proposed; the droop control gains are tuned based on transfer functions around an operating point and the voltage regulator is tuned by a linear quadratic regulator (LQR). The proposed control method is investigated and validated by simulations with a C control program and by experiments with a DSP-based digital control system.
{"title":"Controller Design in <i>αβ</i> domain for Grid-Forming Inverters by Complex Vector Theory","authors":"Ko Oue, Sota Yano, Shunya Sano, Toshiji Kato, Kaoru Inoue","doi":"10.1541/ieejjia.22000460","DOIUrl":"https://doi.org/10.1541/ieejjia.22000460","url":null,"abstract":"Grid-forming inverter control plays an important role in ensuring frequency and voltage stability in a microgrid (MG). This paper proposes a novel power and voltage control in the αβ domain. The proposed method includes two control loops; an outer loop for power droop control and an inner loop for output voltage control. With the proposed controller, active and reactive powers can be controlled according to simple complex power control principles described only in the αβ-domain. Controller gain tuning for both the outer droop and the inner voltage regulator is also proposed; the droop control gains are tuned based on transfer functions around an operating point and the voltage regulator is tuned by a linear quadratic regulator (LQR). The proposed control method is investigated and validated by simulations with a C control program and by experiments with a DSP-based digital control system.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135957645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When designing electric motors, many types of performances (electrical and mechanical characteristics) must be predicted with good accuracy. In general, these performances are determined based on complex theoretical calculations, but theoretical calculations include various assumptions. Therefore, it is difficult to eliminate prediction errors when predicting performance, and it is necessary to improve accuracy by referring actual test data. Recently, with the digitalization of the manufacturing process, a large amount of actual data has been converted into a database, and it is expected to be put to effective use. Here, a neural network that predicts various performances of electric motors using a large amount of actual data as a training dataset, is constructed to achieve uniform and high-precision performance prediction via deep learning. Its practical use for actual design work is verified in this study.
{"title":"Performance Prediction of Electric Motors via Deep Learning","authors":"Masatsugu Oyamada, Sadaaki Kunimatsu, Ikuro Mizumoto","doi":"10.1541/ieejjia.22005304","DOIUrl":"https://doi.org/10.1541/ieejjia.22005304","url":null,"abstract":"When designing electric motors, many types of performances (electrical and mechanical characteristics) must be predicted with good accuracy. In general, these performances are determined based on complex theoretical calculations, but theoretical calculations include various assumptions. Therefore, it is difficult to eliminate prediction errors when predicting performance, and it is necessary to improve accuracy by referring actual test data. Recently, with the digitalization of the manufacturing process, a large amount of actual data has been converted into a database, and it is expected to be put to effective use. Here, a neural network that predicts various performances of electric motors using a large amount of actual data as a training dataset, is constructed to achieve uniform and high-precision performance prediction via deep learning. Its practical use for actual design work is verified in this study.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"224 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136171015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Unmanned aerial vehicles (UAVs) are widely used in many fields, including agriculture and industry. Touchdown of a UAV without tipping over is a crucial but challenging issue owing to disturbances and uncertainties in the landing phase. In particular, when a breakdown occurs in a UAV system and the UAV free falls, sensors can be destroyed or the integrity of the UAV can be compromised. Therefore, developing an emergency landing system that can suppress rebound after free falling and preserve the integrity of UAVs is necessary. This paper proposes an adaptive shock response mechanism as a safe and robust emergency landing system for UAVs. A spring-damper system combined with a plastic deformation part serves as this emergency landing system to absorb and mitigate the impact during the landing phase to avoid tipping over of a UAV by reducing the rebound height. A release system that unlocks the plastic deformation part when the landing height is sufficiently high is proposed. Numerical simulations are conducted to evaluate the performance of the proposed emergency landing system, which is compared with those of two other mechanisms. The results reveal that the proposed method can deliver satisfactory rebound-reducing performance and high robustness against variations in the UAV weight and falling height. Additionally, the effectiveness of the proposed mechanism is experimentally validated using an equivalent model.
{"title":"Fundamental Study on Adaptive Shock Response Control for Emergency Landing of UAVs and Its Experimental Investigation","authors":"Pengcheng Li, Ryuki Sato, Masaki Hasegawa, Susumu Hara","doi":"10.1541/ieejjia.23004526","DOIUrl":"https://doi.org/10.1541/ieejjia.23004526","url":null,"abstract":"Unmanned aerial vehicles (UAVs) are widely used in many fields, including agriculture and industry. Touchdown of a UAV without tipping over is a crucial but challenging issue owing to disturbances and uncertainties in the landing phase. In particular, when a breakdown occurs in a UAV system and the UAV free falls, sensors can be destroyed or the integrity of the UAV can be compromised. Therefore, developing an emergency landing system that can suppress rebound after free falling and preserve the integrity of UAVs is necessary. This paper proposes an adaptive shock response mechanism as a safe and robust emergency landing system for UAVs. A spring-damper system combined with a plastic deformation part serves as this emergency landing system to absorb and mitigate the impact during the landing phase to avoid tipping over of a UAV by reducing the rebound height. A release system that unlocks the plastic deformation part when the landing height is sufficiently high is proposed. Numerical simulations are conducted to evaluate the performance of the proposed emergency landing system, which is compared with those of two other mechanisms. The results reveal that the proposed method can deliver satisfactory rebound-reducing performance and high robustness against variations in the UAV weight and falling height. Additionally, the effectiveness of the proposed mechanism is experimentally validated using an equivalent model.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"162 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134890218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1541/ieejjia.22007736
Satoshi Okuno, Sota Shimizu
This study presents a method that displays selectively-blurred images to users wearing a VR Head Mount Display (HMD), for reducing their VR sickness while maintaining rich-presence they feel as much as possible. Our proposed method blurs displayed images selectively based on a specific length and direction of optical flow at each point in the image to not only reduce the VR sickness but also preserve the original rich-presence of the displayed images. The optical flow direction of each point is opposite to that of the whole image, such areas are not blurred in our proposed method. Our proposed method was verified via two types of experiments, the results proved that our method is effective appropriately for both VR sickness reduction and rich-presence preservation.
{"title":"Study on Displaying Images to Prevent VR Sickness while Maintaining Rich-Presence","authors":"Satoshi Okuno, Sota Shimizu","doi":"10.1541/ieejjia.22007736","DOIUrl":"https://doi.org/10.1541/ieejjia.22007736","url":null,"abstract":"This study presents a method that displays selectively-blurred images to users wearing a VR Head Mount Display (HMD), for reducing their VR sickness while maintaining rich-presence they feel as much as possible. Our proposed method blurs displayed images selectively based on a specific length and direction of optical flow at each point in the image to not only reduce the VR sickness but also preserve the original rich-presence of the displayed images. The optical flow direction of each point is opposite to that of the whole image, such areas are not blurred in our proposed method. Our proposed method was verified via two types of experiments, the results proved that our method is effective appropriately for both VR sickness reduction and rich-presence preservation.","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1541/ieejjia.22003667
R. Inzunza
{"title":"Inverter Solutions for Utility-Scaled Photovoltaic Power Plants","authors":"R. Inzunza","doi":"10.1541/ieejjia.22003667","DOIUrl":"https://doi.org/10.1541/ieejjia.22003667","url":null,"abstract":"","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67664981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1541/ieejjia.22004793
Akash Samanta, Sheldon Williamson
{"title":"Machine Learning-based Remaining Useful Life Prediction Techniques for Lithium-ion Battery Management Systems: A Comprehensive Review","authors":"Akash Samanta, Sheldon Williamson","doi":"10.1541/ieejjia.22004793","DOIUrl":"https://doi.org/10.1541/ieejjia.22004793","url":null,"abstract":"","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67665583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1541/ieejjia.22005866
Kikuko Miyata, S. Hara, Kenji Hayashi, K. Seki, M. Iwasaki, M. Otsuki
{"title":"Vision-Based Target Tracking Controller Design for Asteroid Flyby Problem","authors":"Kikuko Miyata, S. Hara, Kenji Hayashi, K. Seki, M. Iwasaki, M. Otsuki","doi":"10.1541/ieejjia.22005866","DOIUrl":"https://doi.org/10.1541/ieejjia.22005866","url":null,"abstract":"","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67666475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1541/ieejjia.22007388
Goh Teck Chiang, K. Tanemura, S. Tomura
{"title":"Proposal of a High-frequency Integrated Power Converter for Renewable Energy-Grid-BES Interactive Applications","authors":"Goh Teck Chiang, K. Tanemura, S. Tomura","doi":"10.1541/ieejjia.22007388","DOIUrl":"https://doi.org/10.1541/ieejjia.22007388","url":null,"abstract":"","PeriodicalId":45552,"journal":{"name":"IEEJ Journal of Industry Applications","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67666882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}