Pub Date : 2023-04-14DOI: 10.18186/thermal.1283362
H. Lakrafli, S. Tahiri, M. Sennoune, A. Bouardi
This work investigates the effect of palm tree pruning waste (PTPW) on thermal insulation and energy consumption of a refrigerated warehouse (RW). The thermal properties of PTPW depend strongly on its compactness, i.e. how much it weighs divided by how much space it takes up. The thermal conductivity of PTPW measured using the box method is about 0.069 W/m °C for a mass/occupied volume ratio of 0.064 g/cm3. It is comparable or lower than that of other natural materials discussed in the literature. The dynamic thermal simulation tool “TRNSYS” was applied to predict the thermal behavior of RW. The thickness of PTPW material was considered as variant to choose the better condition allowing achieving results very close to those of polyurethane. Obtained results highlight that 30 cm thick PTPW can reduce temperature by 1 to 2°C compared to 10 cm thick polyurethane. An improvement in the energy efficiency of the refrigerated warehouse was also highlighted. So, because of its performance, low cost, and eco-friendly nature, PTPW can compete with conventional insulating materials.
{"title":"Improving the energy efficiency of a refrigerated warehouse through the use of palm tree pruning waste as thermal insulator","authors":"H. Lakrafli, S. Tahiri, M. Sennoune, A. Bouardi","doi":"10.18186/thermal.1283362","DOIUrl":"https://doi.org/10.18186/thermal.1283362","url":null,"abstract":"This work investigates the effect of palm tree pruning waste (PTPW) on thermal insulation and energy consumption of a refrigerated warehouse (RW). The thermal properties of PTPW depend strongly on its compactness, i.e. how much it weighs divided by how much space it takes up. The thermal conductivity of PTPW measured using the box method is about 0.069 W/m °C for a mass/occupied volume ratio of 0.064 g/cm3. It is comparable or lower than that of other natural materials discussed in the literature. The dynamic thermal simulation tool “TRNSYS” was applied to predict the thermal behavior of RW. The thickness of PTPW material was considered as variant to choose the better condition allowing achieving results very close to those of polyurethane. Obtained results highlight that 30 cm thick PTPW can reduce temperature by 1 to 2°C compared to 10 cm thick polyurethane. An improvement in the energy efficiency of the refrigerated warehouse was also highlighted. So, because of its performance, low cost, and eco-friendly nature, PTPW can compete with conventional insulating materials.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43205784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-14DOI: 10.18186/thermal.1283386
S. Ingole
In jet impingement cooling applications, the inclined jet in non-confined condition; also called as submerged jet is experimentally investigated. The objective is to analyze for hot surface cooling applications. Air is used as the working fluid, by using placement of jet on the leading edge of a horizontal rectangular target plate at height H, and examined for downhill side comprehensive cooling performance approach. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20000 is investigated with circular jet for inclination of 15° ≤ θa ≤ 75°. The effect of jet to target distance (H) is also investigated in the range 0.5 ≤ H⁄D ≤ 6.8. The temperature variation at the center line of target is studied with analysis of temperature profile. Its variation with respective to horizontal distance of jet from leading edge (X) and counters are plotted for jet diameter (D) of 16mm. The location of minimum temperature during cooling by jet impingement, goes to downhill side for jet impingement with an angle of 75, 60, 45, 30 and 15°. Cooling is observed to be increase up to X⁄D = 5, and then it declines. The cold spot is seen at (X⁄D) of around 5 to 7 except at high Reynolds number. The impact of jet inclination is more on temperature variation of flat target, compared to other parameters.
{"title":"Temperature analysis for the horizontal target cooling with non-confined and inclined air jet","authors":"S. Ingole","doi":"10.18186/thermal.1283386","DOIUrl":"https://doi.org/10.18186/thermal.1283386","url":null,"abstract":"In jet impingement cooling applications, the inclined jet in non-confined condition; also called as submerged jet is experimentally investigated. The objective is to analyze for hot surface cooling applications. Air is used as the working fluid, by using placement of jet on the leading edge of a horizontal rectangular target plate at height H, and examined for downhill side comprehensive cooling performance approach. The jet Reynolds number in the range of 2000 ≤ Re ≤ 20000 is investigated with circular jet for inclination of 15° ≤ θa ≤ 75°. The effect of jet to target distance (H) is also investigated in the range 0.5 ≤ H⁄D ≤ 6.8. The temperature variation at the center line of target is studied with analysis of temperature profile. Its variation with respective to horizontal distance of jet from leading edge (X) and counters are plotted for jet diameter (D) of 16mm. The location of minimum temperature during cooling by jet impingement, goes to downhill side for jet impingement with an angle of 75, 60, 45, 30 and 15°. Cooling is observed to be increase up to X⁄D = 5, and then it declines. The cold spot is seen at (X⁄D) of around 5 to 7 except at high Reynolds number. The impact of jet inclination is more on temperature variation of flat target, compared to other parameters.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49615446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-11DOI: 10.18186/thermal.1281284
M. Kiyak, U. Emiroğlu, Orhun Baştekeli̇
The milling is a widely used method in the manufacturing industry, especially in the production of complex engravings such as die&molds. Rough milling often requires a large material removal rate in a short time. This purpose also requires the selection and use of the best milling tool path. Today, trochoidal milling is receiving more attention than conventional milling, especially as it significantly increases tool life. In this study, a new toolpath model for trochoidal milling is suggested and this proposed toolpath model is examined in terms of cutting temperature, cutting force, surface quality, tool wear. In this new trochoidal toolpath model proposed for the milling method, the cutting force did not change much compared to the standard trochoidal tool path, but better surface quality and less tool wear were observed.
{"title":"A new trochoidal toolpath in milling operations","authors":"M. Kiyak, U. Emiroğlu, Orhun Baştekeli̇","doi":"10.18186/thermal.1281284","DOIUrl":"https://doi.org/10.18186/thermal.1281284","url":null,"abstract":"The milling is a widely used method in the manufacturing industry, especially in the production of complex engravings such as die&molds. Rough milling often requires a large material removal rate in a short time. This purpose also requires the selection and use of the best milling tool path. Today, trochoidal milling is receiving more attention than conventional milling, especially as it significantly increases tool life. In this study, a new toolpath model for trochoidal milling is suggested and this proposed toolpath model is examined in terms of cutting temperature, cutting force, surface quality, tool wear. In this new trochoidal toolpath model proposed for the milling method, the cutting force did not change much compared to the standard trochoidal tool path, but better surface quality and less tool wear were observed.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48291920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-11DOI: 10.18186/thermal.1327113
L. Saoudi, Nordine Zeraibi
The flow of nanofluids in a corrugated channel has been shown to have a significant impact on heat transfer performance, and has therefore become an important area of research. The ob- jective of this paper is to understand the thermal behavior of Al2O3/water nanofluid in a sinu-soidal and square channel and to identify ways to optimize heat transfer performance in such configurations. For this purpose, a numerical simulation was conducted using ANSYS-Fluent software 16.0 on entropy generation and thermo-hydraulic performance of a wavy channel with the two corrugation profiles (sinusoidal and square). The analyses were carried out under laminar forced convection flow conditions with constant heat flux boundary conditions on the walls. The influence of various parameters, such as particle concentration (0–5%), particle di-ameter (10nm , 40nm and 60nm), and Reynolds number (200 < Re < 800) on the heat transfer, thermal, and frictional entropy generation, and Bejan number was analyzed. Moreover, the distribution of streamlines and static temperature contours has been presented and discussed, and a correlation equation for the average Nusselt number based on the numerical results is presented. One of the most significant results obtained is that the inclusion of nanoparticles (5% volume fraction) in the base fluid yielded remarkable results, including up to 41.92% and 7.03% increase in average Nusselt number for sinusoidal and square channels, respectively. The sinusoidal channel exhibited the highest thermo-hydraulic performance at Re= 800 and φ= 5%, approximately THP= 1.6. In addition, the increase of nanoparticle concentration from 0% to 5% at Re= 800 and dnp= 10nm, diminishes the total entropy generation by 28.39 % and 22.12 % for sinusoidal and square channels, respectively, but when the nanoparticle diameter decreases from 60nm to 10nm at ϕ= 5% and Re= 800, the total entropy generation in the sinusoidal channel decreases by 34.85%, whereas in the square channel, it decreases by 20.05%. Therefore, rather than using a square channel, it is preferable and beneficial to use small values of nanoparticle diameter and large values for each of ϕ and Re in the sinusoidal wavy channel. Overall, the study of nanofluid flow in a wavy channel can provide valuable insights into the behavior of nanofluids and their potential applications in a variety of fields, including manufacturing, energy produc-tion, mining, agriculture, and environmental engineering.
{"title":"Entropy generation of Al2O3/water nanofluid in corrugated channels","authors":"L. Saoudi, Nordine Zeraibi","doi":"10.18186/thermal.1327113","DOIUrl":"https://doi.org/10.18186/thermal.1327113","url":null,"abstract":"The flow of nanofluids in a corrugated channel has been shown to have a significant impact on heat transfer performance, and has therefore become an important area of research. The ob- \u0000jective of this paper is to understand the thermal behavior of Al2O3/water nanofluid in a sinu-soidal and square channel and to identify ways to optimize heat transfer performance in such configurations. For this purpose, a numerical simulation was conducted using ANSYS-Fluent software 16.0 on entropy generation and thermo-hydraulic performance of a wavy channel with the two corrugation profiles (sinusoidal and square). The analyses were carried out under laminar forced convection flow conditions with constant heat flux boundary conditions on the walls. The influence of various parameters, such as particle concentration (0–5%), particle di-ameter (10nm , 40nm and 60nm), and Reynolds number (200 < Re < 800) on the heat transfer, thermal, and frictional entropy generation, and Bejan number was analyzed. Moreover, the distribution of streamlines and static temperature contours has been presented and discussed, and a correlation equation for the average Nusselt number based on the numerical results is presented. One of the most significant results obtained is that the inclusion of nanoparticles (5% volume fraction) in the base fluid yielded remarkable results, including up to 41.92% and 7.03% increase in average Nusselt number for sinusoidal and square channels, respectively. The sinusoidal channel exhibited the highest thermo-hydraulic performance at Re= 800 and φ= 5%, approximately THP= 1.6. \u0000In addition, the increase of nanoparticle concentration from 0% to 5% at Re= 800 and dnp= 10nm, diminishes the total entropy generation by 28.39 % and 22.12 % for sinusoidal and square channels, respectively, but when the nanoparticle diameter decreases from 60nm to 10nm at ϕ= 5% and Re= 800, the total entropy generation in the sinusoidal channel decreases by 34.85%, whereas in the square channel, it decreases by 20.05%. Therefore, rather than using a square channel, it is preferable and beneficial to use small values of nanoparticle diameter and large values for each of ϕ and Re in the sinusoidal wavy channel. Overall, the study of nanofluid flow in a wavy channel can provide valuable insights into the behavior of nanofluids and their potential applications in a variety of fields, including manufacturing, energy produc-tion, mining, agriculture, and environmental engineering.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48269930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.18186/thermal.1278242
D. Ravi, Thundil Karuppa Raj Rajagopal
The effect of outlet thickness and outlet angle of the bladeless fan have been an alysed numerically on the aerodynamic performance of the bladeless fan. Five different aerofoil profiles have been considered for the present work is Eppler 479, Eppler169, Eppler 473, S1046 and S1048. The bladeless fan arrangement has been achieved by converting the aerodynamic models listed above. The ANSYS ICEM CFD 16.0 have been used to discretize the enclosure and bladeless fan through finite volume approach. The mesh model is then imported into ANSYS CFX 16.0 pre-processor for applying the required boundary conditions. The governing equations namely continuity and momentum are used to solve the flow physics through and across the bladeless fan and SST k-? turbulence model has been used to predict the turbulence in the bladeless fan. The effect of outlet thicknesses and outlet angles have been varied for all the five aerofoil configurations mentioned and the volumetric flow at inlet have been adjusted from 5 LPS to 80 LPS. Outlet thickness is varied from 0.8, 1.0, 1.3, 1.5 and 2 mm and the slit angle is varied from 20 degrees to 80 degrees in step of 10 degrees. The results predicted that Eppler 473 aerofoil profile showed better performance when the thickness of slit and outlet angle has been fixed constant as 1 mm and 70 degree respectively. Also, the maximum discharge flow ratio is recorded for an inlet volumetric flow rate of 80 LPS and it is found to be 34.37. The present numerical study substantiated that outlet thickness plays a dominant role on the bladeless fan’s aerodynamic performance compared to outlet angle and aerodynamic shape considered in this numerical analysis. The contours of velocity, streamline and pressure of the bladeless fan have been discussed.
{"title":"Numerical investigation on the effect of slit thickness and outlet angle of the bladeless fan for flow optimization using CFD techniques","authors":"D. Ravi, Thundil Karuppa Raj Rajagopal","doi":"10.18186/thermal.1278242","DOIUrl":"https://doi.org/10.18186/thermal.1278242","url":null,"abstract":"The effect of outlet thickness and outlet angle of the bladeless fan have been an alysed numerically on the aerodynamic performance of the bladeless fan. Five different aerofoil profiles have been considered for the present work is Eppler 479, Eppler169, Eppler 473, S1046 and S1048. The bladeless fan arrangement has been achieved by converting the aerodynamic models listed above. The ANSYS ICEM CFD 16.0 have been used to discretize the enclosure and bladeless fan through finite volume approach. The mesh model is then imported into ANSYS CFX 16.0 pre-processor for applying the required boundary conditions. The governing equations namely continuity and momentum are used to solve the flow physics through and across the bladeless fan and SST k-? turbulence model has been used to predict the turbulence in the bladeless fan. The effect of outlet thicknesses and outlet angles have been varied for all the five aerofoil configurations mentioned and the volumetric flow at inlet have been adjusted from 5 LPS to 80 LPS. Outlet thickness is varied from 0.8, 1.0, 1.3, 1.5 and 2 mm and the slit angle is varied from 20 degrees to 80 degrees in step of 10 degrees. The results predicted that Eppler 473 aerofoil profile showed better performance when the thickness of slit and outlet angle has been fixed constant as 1 mm and 70 degree respectively. Also, the maximum discharge flow ratio is recorded for an inlet volumetric flow rate of 80 LPS and it is found to be 34.37. The present numerical study substantiated that outlet thickness plays a dominant role on the bladeless fan’s aerodynamic performance compared to outlet angle and aerodynamic shape considered in this numerical analysis. The contours of velocity, streamline and pressure of the bladeless fan have been discussed.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43333519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-05DOI: 10.18186/thermal.1277897
Udayvir Singh, N. Gupta
Heat pipes are the specific class of heat exchangers. They are used in thermal management of electronic components. Research community is continuously working to obtain the optimum heat transfer performance. In present work, parametric study of heat pipe using nano- fluid has been carried out. The operating parameters of heat pipe like power supply, orientation (gravity assisted angle), filling- ratio, and nano-fluids concentration are being investigated to find the optimum thermal performance of heat pipe. Response surface method (RSM) is used to analyze the effect of operating parameters on thermal performance. The optimum value of thermal resistance and thermal efficiency are 0.3994 °C/Watt and 68.44% respectively. Most suitable power supply, inclination angle, filling ratio and nanofluid concentration are 185.85 W, 60.09°, 50.7% and 1.05 % respectively. The experimental results confirm and validate the RSM predicted results.
{"title":"Thermal performance analysis of heat pipe using response surface methdologyUdayvir","authors":"Udayvir Singh, N. Gupta","doi":"10.18186/thermal.1277897","DOIUrl":"https://doi.org/10.18186/thermal.1277897","url":null,"abstract":"Heat pipes are the specific class of heat exchangers. They are used in thermal management of electronic components. Research community is continuously working to obtain the optimum heat transfer performance. In present work, parametric study of heat pipe using nano- fluid has been carried out. The operating parameters of heat pipe like power supply, orientation (gravity assisted angle), filling- ratio, and nano-fluids concentration are being investigated to find the optimum thermal performance of heat pipe. Response surface method (RSM) is used to analyze the effect of operating parameters on thermal performance. The optimum value of thermal resistance and thermal efficiency are 0.3994 °C/Watt and 68.44% respectively. Most suitable power supply, inclination angle, filling ratio and nanofluid concentration are 185.85 W, 60.09°, 50.7% and 1.05 % respectively. The experimental results confirm and validate the RSM predicted results.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48087228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-28DOI: 10.18186/thermal.1272395
Alişan Gönül, Abdulkerim Okbaz
Microchannel heat sinks and heat exchangers are widely used in the cooling of electronic systems. However, it is still important to enhance the heat transfer in the microchannel so that the intense heat generated can be removed. Vortex generators (VGs) create secondary flow structures in the flow, increasing the fluid mixing, thinning the thermal boundary layer, and ultimately boosting heat transfer. Here, we have controlled the flow structure and improved the heat transfer with the lowest possible pressure loss by placing VGs of different sizes, numbers, and angles of attack in a microchannel. The improvement in heat transfer is accelerated as vortex intensity increases. The angle of attack has a significant impact on vortex formation lengths, which reach high dimensions around 90°. Furthermore, increasing the VG length significantly increases the vortex formation lengths. The number of VG pairs has a significant impact on heat transfer and pressure losses. As the number of VG pairs increases, so does the area occupied by the secondary flow regions in the microchannel, increasing the fluid mixture and boosting heat transfer. The highest enhancement in heat transfer using VGs is obtained at around 230%, while the corresponding increase in pressure loss is 950%. According to the JF factor which we consider a performance evaluation criteria, the best result is around 1.38. The Genetic Aggregation Response Surface Methodology has been applied to numerical results. The related method is realized to produce results that are consistent with the numerical results within a ±5% error interval. All the input parameters considered in the sensitivity analysis have an impact of at least 10% on the output parameters.
{"title":"Enhanced performance of a microchannel with rectangular vortex generators","authors":"Alişan Gönül, Abdulkerim Okbaz","doi":"10.18186/thermal.1272395","DOIUrl":"https://doi.org/10.18186/thermal.1272395","url":null,"abstract":"Microchannel heat sinks and heat exchangers are widely used in the cooling of electronic systems. However, it is still important to enhance the heat transfer in the microchannel so that the intense heat generated can be removed. Vortex generators (VGs) create secondary flow structures in the flow, increasing the fluid mixing, thinning the thermal boundary layer, and ultimately boosting heat transfer. Here, we have controlled the flow structure and improved the heat transfer with the lowest possible pressure loss by placing VGs of different sizes, numbers, and angles of attack in a microchannel. The improvement in heat transfer is accelerated as vortex intensity increases. The angle of attack has a significant impact on vortex formation lengths, which reach high dimensions around 90°. Furthermore, increasing the VG length significantly increases the vortex formation lengths. The number of VG pairs has a significant impact on heat transfer and pressure losses. As the number of VG pairs increases, so does the area occupied by the secondary flow regions in the microchannel, increasing the fluid mixture and boosting heat transfer. The highest enhancement in heat transfer using VGs is obtained at around 230%, while the corresponding increase in pressure loss is 950%. According to the JF factor which we consider a performance evaluation criteria, the best result is around 1.38. The Genetic Aggregation Response Surface Methodology has been applied to numerical results. The related method is realized to produce results that are consistent with the numerical results within a ±5% error interval. All the input parameters considered in the sensitivity analysis have an impact of at least 10% on the output parameters.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46244926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.18186/thermal.1268844
Basma Hamdi, A. Kheiri, M. Mabrouk, L. Kairouani
The Organic Rankine Cycle (ORC) is a promising technology for power generation from low-grade heat. The selection of working fluids is one of the important key points to improve the performance of an ORC system. Zeotropic mixtures show promising performances as working fluids. In fact, their temperature glide during phase change enables better match between the working fluid and the heat source/sink temperatures. In order to reveal the performance of mixture in ORC system, this paper deals with the thermodynamic model of the subcritical Organic Rankine Cycle (ORC) systems driven by low grade heat source while using zeotropic mixture working fluids with a special consideration to the interaction between phase change glides and the pinch value and their location in both the evaporator and the condenser (HEXs). Zeotropic mixtures of seven pure fluids are evaluated as working fluids for a subcritical ORC system. The mass fraction effects of mixtures on the thermal efficiency are analyzed. For given working conditions (working fluid mass flow, pressure and bubble temperature) the results show that for each considered zeotropic mixture there exist mass fraction ranges that are not consistent with the pinch values constraint in the HEXs and leads to so-called ‘infeasible zones’ with unreal HEXs dimensions. Results shows also that, out of these “infeasible fractions” zone, keeping unchanged the working conditions, the thermal performances of ORC system using zeotropic mixture are always better than the thermal performances of the same systems using the correspondent pure fluids. In addition, out of these highlighted “unfeasible zones” it was found that mixture with high temperature glide improve the thermal efficiency of ORC system.
{"title":"Organic rankine cycle systems with mixture of pure fluids: On infeasible fluid’s fractions due to the interaction between the mixture glide and the hexs pinchs","authors":"Basma Hamdi, A. Kheiri, M. Mabrouk, L. Kairouani","doi":"10.18186/thermal.1268844","DOIUrl":"https://doi.org/10.18186/thermal.1268844","url":null,"abstract":"The Organic Rankine Cycle (ORC) is a promising technology for power generation from low-grade heat. The selection of working fluids is one of the important key points to improve the performance of an ORC system. Zeotropic mixtures show promising performances as working fluids. In fact, their temperature glide during phase change enables better match between the working fluid and the heat source/sink temperatures. In order to reveal the performance of mixture in ORC system, this paper deals with the thermodynamic model of the subcritical Organic Rankine Cycle (ORC) systems driven by low grade heat source while using zeotropic mixture working fluids with a special consideration to the interaction between phase change glides and the pinch value and their location in both the evaporator and the condenser (HEXs). Zeotropic mixtures of seven pure fluids are evaluated as working fluids for a subcritical ORC system. The mass fraction effects of mixtures on the thermal efficiency are analyzed. For given working conditions (working fluid mass flow, pressure and bubble temperature) the results show that for each considered zeotropic mixture there exist mass fraction ranges that are not consistent with the pinch values constraint in the HEXs and leads to so-called ‘infeasible zones’ with unreal HEXs dimensions. Results shows also that, out of these “infeasible fractions” zone, keeping unchanged the working conditions, the thermal performances of ORC system using zeotropic mixture are always better than the thermal performances of the same systems using the correspondent pure fluids. In addition, out of these highlighted “unfeasible zones” it was found that mixture with high temperature glide improve the thermal efficiency of ORC system.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45128747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.18186/thermal.1333937
Hussaini Syed Mujtaba, T. Feroze, A. Hanan, Haider Ali Shams
A wide variety of heating and cooling applications use heat exchangers. The increase in energy prices, the requirement for size reduction, and restriction on greenhouse gas emissions has led to the need for finding ways to develop efficient heat exchangers. A cost-efficient way to enhance the model of a heat exchanger by visualizing the effects of the design parameters is using Computational Fluid Dynamics (CFD). The reason for this exploration was to lead an examination of the varieties/changes in the general intensity move process for a Finned-Tube Heat Exchanger (FTHE), also known as Air Coil Heat Exchanger (ACHE) with a variety of plan boundaries like the quantity of tubes, course of action of tubes, and the material utilized for the intensity exchanger. The widely used heat exchanger that uses refrigerant R314a and air as the working fluids was simulated with different design modifications. The simulated results exhibited as to how the number of tubes, arrangement of coils/tubes, material of tubes, and density / spacing of fins, effects the pressure drop, temperature and velocities profiles, and heat exchangers’ transfer of a heat. The use of copper coils improved the heat transfer by approximately 61% as compared to aluminium coils.
{"title":"A CFD investigation of the design variables affecting the performance of finned-tube heat exchangers","authors":"Hussaini Syed Mujtaba, T. Feroze, A. Hanan, Haider Ali Shams","doi":"10.18186/thermal.1333937","DOIUrl":"https://doi.org/10.18186/thermal.1333937","url":null,"abstract":"A wide variety of heating and cooling applications use heat exchangers. The increase in energy prices, the requirement for size reduction, and restriction on greenhouse gas emissions has led to the need for finding ways to develop efficient heat exchangers. A cost-efficient way to enhance the model of a heat exchanger by visualizing the effects of the design parameters is using Computational Fluid Dynamics (CFD). The reason for this exploration was to lead an examination of the varieties/changes in the general intensity move process for a Finned-Tube Heat Exchanger (FTHE), also known as Air Coil Heat Exchanger (ACHE) with a variety of plan boundaries like the quantity of tubes, course of action of tubes, and the material utilized for the intensity exchanger. The widely used heat exchanger that uses refrigerant R314a and air as the working fluids was simulated with different design modifications. The simulated results exhibited as to how the number of tubes, arrangement of coils/tubes, material of tubes, and density / spacing of fins, effects the pressure drop, temperature and velocities profiles, and heat exchangers’ transfer of a heat. The use of copper coils improved the heat transfer by approximately 61% as compared to aluminium coils.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":"42 2","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41268346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.18186/thermal.1337469
M. A. Batiha, Saleh E. Rawadieh, M. Batiha, Leema A. Al-Makhadmeh, M. Kayfeci, Freabdullah Marachli
Determination of thermal insulation performance (i.e. optimum insulation thickness, energy saving and payback period) is a tedious and time-consuming task that requires a thorough knowledge in thermal insulation engineering and economics. The main goal of this paper is to make the determination of insulation performance simple and timesaving by introduc-ing thermal insulation performance curves (TIPCs) from which the insulation performance can easily be found for any climate condition and all economic factors related to energy and insulation. These curves were generated based on a life-cycle cost analysis (LCCA) method. The curves can be easily read based on a single factor, called the f-factor, which comprises the number of degree-day, coefficient of performance, present worth factor, energy cost, and insu-lation cost. With the gain of heating and cooling degree days (i.e. HDD and CDD), TIPCs can be used for both heating and cooling loads. TIPCs cover commonly used insulation materials for building walls with thermal conductivities range from 0.020 to 0.055 W/m K. TIPCs were validated against published data.
{"title":"Thermal insulation performance curves for exterior walls in heating and cooling seasons","authors":"M. A. Batiha, Saleh E. Rawadieh, M. Batiha, Leema A. Al-Makhadmeh, M. Kayfeci, Freabdullah Marachli","doi":"10.18186/thermal.1337469","DOIUrl":"https://doi.org/10.18186/thermal.1337469","url":null,"abstract":"Determination of thermal insulation performance (i.e. optimum insulation thickness, energy saving and payback period) is a tedious and time-consuming task that requires a thorough knowledge in thermal insulation engineering and economics. The main goal of this paper is to make the determination of insulation performance simple and timesaving by introduc-ing thermal insulation performance curves (TIPCs) from which the insulation performance can easily be found for any climate condition and all economic factors related to energy and insulation. These curves were generated based on a life-cycle cost analysis (LCCA) method. The curves can be easily read based on a single factor, called the f-factor, which comprises the number of degree-day, coefficient of performance, present worth factor, energy cost, and insu-lation cost. With the gain of heating and cooling degree days (i.e. HDD and CDD), TIPCs can be used for both heating and cooling loads. TIPCs cover commonly used insulation materials for building walls with thermal conductivities range from 0.020 to 0.055 W/m K. TIPCs were validated against published data.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46805631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}