I. D. Yildirim, A. U. Ammar, M. Buldu-Akturk, F. Bakan, E. Erdem
This review paper highlights the recent developments in supercapacitors by pointing out the significance of appropriate electrode and device designs. We reported ten extremely high-performance supercapacitors with specific capacitance values among the highest available until now to the best of our knowledge. These state-of-the-art designs employing innovative electrode materials have been discussed along with their short descriptions. The supercapacitors collected here possess the most promising potential for facilitating next-generation systems in energy harvesting and storage. This review is just the surface that can help provide a pathway for supercapacitor
{"title":"Strategies to reach ultrahigh capacitance values for supercapacitors: materials design","authors":"I. D. Yildirim, A. U. Ammar, M. Buldu-Akturk, F. Bakan, E. Erdem","doi":"10.3906/fiz-2104-14","DOIUrl":"https://doi.org/10.3906/fiz-2104-14","url":null,"abstract":"This review paper highlights the recent developments in supercapacitors by pointing out the significance of appropriate electrode and device designs. We reported ten extremely high-performance supercapacitors with specific capacitance values among the highest available until now to the best of our knowledge. These state-of-the-art designs employing innovative electrode materials have been discussed along with their short descriptions. The supercapacitors collected here possess the most promising potential for facilitating next-generation systems in energy harvesting and storage. This review is just the surface that can help provide a pathway for supercapacitor","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41875832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
U. Tabassam, S. Abbas, Muhammad Anns Saif, Z. Abidin, Y. Ali
{"title":"Study of the average transverse sphericity in 𝒑𝒑 collisions at Large Hadron Collider (LHC) energies","authors":"U. Tabassam, S. Abbas, Muhammad Anns Saif, Z. Abidin, Y. Ali","doi":"10.3906/fiz-2103-26","DOIUrl":"https://doi.org/10.3906/fiz-2103-26","url":null,"abstract":"","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46266683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface plasmon resonances, the coherent oscillation of free electrons, can concentrate incident field into small volumes much smaller than the incident wavelength. The intense fields at these textit{hot spots} enhance the light-matter interactions and may lead to the appearance of nonlinearity. Controlling such nonlinearities is significant for various practical applications. Here we report that by coupling dark modes to the first and the generated second harmonic modes separately, one can gain control over both fields. We find that by engineering path interferences (Fano resonances) between bright and dark plasmon modes it is possible to enhance the fundamental mode without increasing the nonlinear field, enhance the nonlinear field without modifying the fundamental mode, and enhance the second harmonic field with enhanced fundamental mode.
{"title":"Fano enhancement of second harmonic field via dark-bright plasmon coupling","authors":"Mehmet Günay","doi":"10.3906/fiz-2103-5","DOIUrl":"https://doi.org/10.3906/fiz-2103-5","url":null,"abstract":"Surface plasmon resonances, the coherent oscillation of free electrons, can concentrate incident field into small volumes much smaller than the incident wavelength. The intense fields at these textit{hot spots} enhance the light-matter interactions and may lead to the appearance of nonlinearity. Controlling such nonlinearities is significant for various practical applications. Here we report that by coupling dark modes to the first and the generated second harmonic modes separately, one can gain control over both fields. We find that by engineering path interferences (Fano resonances) between bright and dark plasmon modes it is possible to enhance the fundamental mode without increasing the nonlinear field, enhance the nonlinear field without modifying the fundamental mode, and enhance the second harmonic field with enhanced fundamental mode.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42371509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Studying the semileptonic decays of charmed particles is prominent in testing the Standard Model of particle physics. Motivated by recent experimental progress in weak decays of the charm baryon sector, we study the form factors of Λc → Λ`ν transition on two flavor lattices. We compute twoand three-point functions, extract the dimensionless projected correlators, and combine them to form the Weinberg form factors. In the zero transferred momentum limit f1, f2 and g1 form factors are found to be in agreement with other models, furthermore f3 and g3 form factors are comparable to model determinations. The g2 form factor, on the other hand, is found to be mildly larger. We also evaluate the helicity form factors, which is consistent with the previous lattice studies.
{"title":"𝚲𝒄 → 𝚲 form factors in lattice QCD","authors":"H. Bahtiyar","doi":"10.3906/fiz-2104-28","DOIUrl":"https://doi.org/10.3906/fiz-2104-28","url":null,"abstract":"Studying the semileptonic decays of charmed particles is prominent in testing the Standard Model of particle physics. Motivated by recent experimental progress in weak decays of the charm baryon sector, we study the form factors of Λc → Λ`ν transition on two flavor lattices. We compute twoand three-point functions, extract the dimensionless projected correlators, and combine them to form the Weinberg form factors. In the zero transferred momentum limit f1, f2 and g1 form factors are found to be in agreement with other models, furthermore f3 and g3 form factors are comparable to model determinations. The g2 form factor, on the other hand, is found to be mildly larger. We also evaluate the helicity form factors, which is consistent with the previous lattice studies.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49142967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eastern Anatolia Observatory (DAG) project was initiated in Erzurum/Turkey in 2011. DAG will have Turkey’s largest (4 m) and first infrared telescope. The installation process is planned to be by taking its first light in the end of 2021. This study was focused on a new analysis method about the atmospheric properties of DAG site in terms of the cloudiness as known the most vital atmospheric parameter for ground-based astronomical observatories. In this regard, the cloudiness for DAG site is comprehensively examined using the “Cloud Mask” (CMa) and “Cloud Type” (CT) products from Satellite Application Facility on Support to Nowcasting and Very Short-Range Forecasting (NWC SAF). Firstly, the cloudiness and the cloud types over DAG site were determined. Secondly, NWC SAF CMa and CT data have been redefined for astronomical purposes, and the pixel values/meanings in CMa and CT images have been reduced from 6 to 4 and from 21 to 4 pixels, respectively. Thirdly, these new data were used to define a new index named as “Astronomical Clearness Index” (ACI), and finally, the observable days for DAG site were determined using this newly defined index.
东安那托利亚天文台(DAG)项目于2011年在土耳其埃尔祖鲁姆启动。DAG将拥有土耳其最大的(4米)和第一台红外望远镜。安装过程计划在2021年底首次亮相。本研究的重点是用云量来分析DAG站点的大气特性,云量是地面天文台最重要的大气参数。在这方面,DAG站点的云量是使用卫星应用设施支持实时预报和极短距离预报(NWC SAF)的“云罩”(CMa)和“云类型”(CT)产品进行全面检查的。首先,确定了DAG站点的云量和云类型。其次,NWC SAF CMa和CT数据已被重新定义用于天文目的,并且CMa和CT图像中的像素值/含义已分别从6个像素减少到4个像素和从21个像素减少至4个像素。第三,利用这些新数据定义了一个新的指数,称为“天文清晰度指数”(ACI),最后,利用这个新定义的指数确定了DAG站点的可观测天数。
{"title":"A New Astronomical Parameter from Remote Sensing Data: Astronomical Clearness Index (ACI)","authors":"K. Kaba, C. Yeşi̇lyaprak, O. Şatır","doi":"10.3906/fiz-2005-14","DOIUrl":"https://doi.org/10.3906/fiz-2005-14","url":null,"abstract":"Eastern Anatolia Observatory (DAG) project was initiated in Erzurum/Turkey in 2011. DAG will have Turkey’s largest (4 m) and first infrared telescope. The installation process is planned to be by taking its first light in the end of 2021. This study was focused on a new analysis method about the atmospheric properties of DAG site in terms of the cloudiness as known the most vital atmospheric parameter for ground-based astronomical observatories. In this regard, the cloudiness for DAG site is comprehensively examined using the “Cloud Mask” (CMa) and “Cloud Type” (CT) products from Satellite Application Facility on Support to Nowcasting and Very Short-Range Forecasting (NWC SAF). Firstly, the cloudiness and the cloud types over DAG site were determined. Secondly, NWC SAF CMa and CT data have been redefined for astronomical purposes, and the pixel values/meanings in CMa and CT images have been reduced from 6 to 4 and from 21 to 4 pixels, respectively. Thirdly, these new data were used to define a new index named as “Astronomical Clearness Index” (ACI), and finally, the observable days for DAG site were determined using this newly defined index.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49547080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Starting from graphene, 2D layered materials family has been recently set up more than 100 different materials with variety of different class of materials such as semiconductors, metals, semimetals, superconductors. Among these materials, 2D semiconductors have found especial importance in the state of the art device applications compared to that of the current conventional devices such as (which material based for example Si based) field effect transistors (FETs) and photodetectors during the last two decades. This high potential in solid state devices is mostly revealed by the transition metal dichalcogenides (TMDCs) semiconductor materials such as MoS2 , WS2 , MoSe2 and WSe2 . Therefore, many different methods and approaches have been developed to grow or obtain so far in order to make use them in solid state devices, which is a great challenge in large area applications. Although there are intensively studied methods such as chemical vapor deposition (CVD), mechanical exfoliation, atomic layer deposition, it is sputtering getting attention day by day due to the simplicity of the growth method together with its reliability, large area growth possibility and repeatability. In this review article, we provide benefits and disadvantages of all the growth methods when growing TMDC materials, then focusing on the sputtering TMDC growth strategies performed. In addition, TMDCs for the FETs and photodetector devices grown by RFMS have been surveyed.
{"title":"Sputtered 2D transition metal dichalcogenides: from growth to device applications","authors":"M. Acar, E. Gur","doi":"10.3906/fiz-2104-8","DOIUrl":"https://doi.org/10.3906/fiz-2104-8","url":null,"abstract":"Starting from graphene, 2D layered materials family has been recently set up more than 100 different materials with variety of different class of materials such as semiconductors, metals, semimetals, superconductors. Among these materials, 2D semiconductors have found especial importance in the state of the art device applications compared to that of the current conventional devices such as (which material based for example Si based) field effect transistors (FETs) and photodetectors during the last two decades. This high potential in solid state devices is mostly revealed by the transition metal dichalcogenides (TMDCs) semiconductor materials such as MoS2 , WS2 , MoSe2 and WSe2 . Therefore, many different methods and approaches have been developed to grow or obtain so far in order to make use them in solid state devices, which is a great challenge in large area applications. Although there are intensively studied methods such as chemical vapor deposition (CVD), mechanical exfoliation, atomic layer deposition, it is sputtering getting attention day by day due to the simplicity of the growth method together with its reliability, large area growth possibility and repeatability. In this review article, we provide benefits and disadvantages of all the growth methods when growing TMDC materials, then focusing on the sputtering TMDC growth strategies performed. In addition, TMDCs for the FETs and photodetector devices grown by RFMS have been surveyed.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43445799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range","authors":"Ö. Sevgili","doi":"10.3906/fiz-2101-17","DOIUrl":"https://doi.org/10.3906/fiz-2101-17","url":null,"abstract":"","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49669560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of two different substituted atoms in lithium positions on the structure of garnet-type solid electrolytes","authors":"S. Saran, O. M. Özkendir, Ü. Atav","doi":"10.3906/fiz-2012-5","DOIUrl":"https://doi.org/10.3906/fiz-2012-5","url":null,"abstract":"","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45728750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the effect of self-trapped holes in the current gain mechanism of β−Ga2O3 Schottky diode photodetectors","authors":"F. Akyol","doi":"10.3906/fiz-2102-12","DOIUrl":"https://doi.org/10.3906/fiz-2102-12","url":null,"abstract":"","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47681458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials and devices for integrated room temperature quantum spintronics","authors":"M. Onbaşlı","doi":"10.3906/fiz-2005-25","DOIUrl":"https://doi.org/10.3906/fiz-2005-25","url":null,"abstract":"","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":"45 1","pages":"74-81"},"PeriodicalIF":2.1,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47933467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}