首页 > 最新文献

EURASIP Journal on Information Security最新文献

英文 中文
Human-artificial intelligence approaches for secure analysis in CAPTCHA codes CAPTCHA码安全分析的人工智能方法
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-12-12 DOI: 10.1186/s13635-022-00134-9
Nghia Dinh, L. Ogiela
{"title":"Human-artificial intelligence approaches for secure analysis in CAPTCHA codes","authors":"Nghia Dinh, L. Ogiela","doi":"10.1186/s13635-022-00134-9","DOIUrl":"https://doi.org/10.1186/s13635-022-00134-9","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":"1-20"},"PeriodicalIF":3.6,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42909518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Behavior-based user authentication on mobile devices in various usage contexts 在各种使用环境下移动设备上基于行为的用户身份验证
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-09-16 DOI: 10.1186/s13635-022-00132-x
D. Progonov, Valentyna Cherniakova, Pavlo Kolesnichenko, Andriy Oliynyk
{"title":"Behavior-based user authentication on mobile devices in various usage contexts","authors":"D. Progonov, Valentyna Cherniakova, Pavlo Kolesnichenko, Andriy Oliynyk","doi":"10.1186/s13635-022-00132-x","DOIUrl":"https://doi.org/10.1186/s13635-022-00132-x","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":"1-11"},"PeriodicalIF":3.6,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46883933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Presentation attack detection and biometric recognition in a challenge-response formalism 挑战-响应形式化中的呈现攻击检测和生物特征识别
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-09-05 DOI: 10.1186/s13635-022-00131-y
E. Haasnoot, L. Spreeuwers, R. Veldhuis
{"title":"Presentation attack detection and biometric recognition in a challenge-response formalism","authors":"E. Haasnoot, L. Spreeuwers, R. Veldhuis","doi":"10.1186/s13635-022-00131-y","DOIUrl":"https://doi.org/10.1186/s13635-022-00131-y","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"49 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65684274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Robust video steganography for social media sharing based on principal component analysis 基于主成分分析的社交媒体共享鲁棒视频隐写
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-06-20 DOI: 10.1186/s13635-022-00130-z
Pingan Fan, Hong Zhang, Xianfeng Zhao
{"title":"Robust video steganography for social media sharing based on principal component analysis","authors":"Pingan Fan, Hong Zhang, Xianfeng Zhao","doi":"10.1186/s13635-022-00130-z","DOIUrl":"https://doi.org/10.1186/s13635-022-00130-z","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"388 1-6","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41297171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the methodology of fingerprint template protection schemes conception : meditations on the reliability 指纹模板保护方案构想的方法学:对可靠性的思考
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-03-25 DOI: 10.1186/s13635-022-00129-6
A. Lahmidi, Chouaib Moujahdi, K. Minaoui, M. Rziza
{"title":"On the methodology of fingerprint template protection schemes conception : meditations on the reliability","authors":"A. Lahmidi, Chouaib Moujahdi, K. Minaoui, M. Rziza","doi":"10.1186/s13635-022-00129-6","DOIUrl":"https://doi.org/10.1186/s13635-022-00129-6","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65684211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
DIPPAS: a deep image prior PRNU anonymization scheme DIPPAS:一种深度图像先验PRNU匿名化方案
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-02-14 DOI: 10.1186/s13635-022-00128-7
Picetti, Francesco, Mandelli, Sara, Bestagini, Paolo, Lipari, Vincenzo, Tubaro, Stefano
Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the photo response non-uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.
源设备识别是图像取证中的一个重要主题,因为它可以追溯到图像的起源。它的对应物是源设备匿名化,也就是说,掩盖图像上可能对识别源设备有用的任何痕迹。用于源设备识别的典型痕迹是光响应非均匀性(PRNU),这是设备在获取的图像上留下的噪声模式。在本文中,我们设计了一种方法来抑制自然图像中的这种痕迹,而不会对图像质量产生重大影响。明确地,我们将PRNU匿名化转化为深度图像先验(DIP)框架中的全局优化问题和局部后处理操作的结合。简而言之,卷积神经网络(CNN)作为一个生成器,迭代地返回几个带有衰减PRNU迹的图像。通过对这些图像进行直接的局部后处理和组装,我们生成的最终图像相对于源PRNU是匿名的,仍然保持高视觉质量。对于广泛采用的深度学习范式,所使用的CNN不是在一组输入-目标图像对上进行训练的。相反,它被优化为从被分析的原始图像本身重建输出图像。这使得该方法特别适用于分析大型异构数据库的场景。此外,它还可以防止由于缺乏泛化而产生的任何问题。通过公开数据集上的数值例子,我们证明了我们的方法与最先进的技术相比是有效的。
{"title":"DIPPAS: a deep image prior PRNU anonymization scheme","authors":"Picetti, Francesco, Mandelli, Sara, Bestagini, Paolo, Lipari, Vincenzo, Tubaro, Stefano","doi":"10.1186/s13635-022-00128-7","DOIUrl":"https://doi.org/10.1186/s13635-022-00128-7","url":null,"abstract":"Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counterpart is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the photo response non-uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without a significant impact on image quality. Expressly, we turn PRNU anonymization into the combination of a global optimization problem in a deep image prior (DIP) framework followed by local post-processing operations. In a nutshell, a convolutional neural network (CNN) acts as a generator and iteratively returns several images with attenuated PRNU traces. By exploiting straightforward local post-processing and assembly on these images, we produce a final image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely adopted deep learning paradigms, the used CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct output images from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed. Moreover, it prevents any problem due to the lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"20 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Secure machine learning against adversarial samples at test time 在测试时针对对抗性样本进行安全的机器学习
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-12 DOI: 10.1186/s13635-021-00125-2
Jing Lin, L. Njilla, Kaiqi Xiong
{"title":"Secure machine learning against adversarial samples at test time","authors":"Jing Lin, L. Njilla, Kaiqi Xiong","doi":"10.1186/s13635-021-00125-2","DOIUrl":"https://doi.org/10.1186/s13635-021-00125-2","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":"1-15"},"PeriodicalIF":3.6,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49516167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
"Alexa, What's a Phishing Email?": Training users to spot phishing emails using a voice assistant. “Alexa,什么是网络钓鱼邮件?”:培训用户使用语音助手识别网络钓鱼邮件。
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 Epub Date: 2022-11-22 DOI: 10.1186/s13635-022-00133-w
Filipo Sharevski, Peter Jachim

This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an interaction-based phishing training focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.

本文报告了一项实证研究的结果,该研究调查了使用智能语音助手(在我们的案例中是亚马逊Alexa)向用户提供网络钓鱼培训的有效性。由于智能语音助手几乎不能利用视觉线索,但可以提供方便的与用户交互,因此我们开发了基于交互的网络钓鱼培训,重点关注说服原则,并举例说明如何在网络钓鱼电子邮件中寻找它们。为了测试这种培训的有效性,我们进行了一项受试者之间的研究,将120名参与者随机分为三组:不接受培训,与Alexa进行基于互动的培训,以及事实和建议培训,并评估了28封电子邮件。结果显示,在检测采用以下说服原则(和/或组合)的网络钓鱼邮件时,基于互动的组的参与者在统计上优于其他人:权威、权威/稀缺、承诺、承诺/喜欢和稀缺/喜欢。本文讨论了这一结果对未来网络钓鱼培训和反网络钓鱼工作的意义。
{"title":"\"Alexa, What's a Phishing Email?\": Training users to spot phishing emails using a voice assistant.","authors":"Filipo Sharevski,&nbsp;Peter Jachim","doi":"10.1186/s13635-022-00133-w","DOIUrl":"https://doi.org/10.1186/s13635-022-00133-w","url":null,"abstract":"<p><p>This paper reports the findings from an empirical study investigating the effectiveness of using intelligent voice assistants, Amazon Alexa in our case, to deliver a phishing training to users. Because intelligent voice assistants can hardly utilize visual cues but provide for convenient interaction with users, we developed an <i>interaction-based phishing training</i> focused on the principles of persuasion with examples on how to look for them in phishing emails. To test the effectiveness of this training, we conducted a between-subject study where 120 participants were randomly assigned in three groups: no training, interaction-based training with Alexa, and a facts-and-advice training and assessed a vignette of 28 emails. The results show that the participants in the interaction-based group statistically outperformed the others when detecting phishing emails that employed the following persuasion principles (and/or combinations of): authority, authority/scarcity, commitment, commitment/liking, and scarcity/liking. The paper discusses the implication of this result for future phishing training and anti-phishing efforts.</p>","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":"7"},"PeriodicalIF":3.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35208957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Image life trails based on contrast reduction models for face counter-spoofing 基于对比度降低模型的人脸反欺骗图像生命轨迹
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-12-29 DOI: 10.1186/s13635-022-00135-8
Balaji Rao Katika, K. Karthik
{"title":"Image life trails based on contrast reduction models for face counter-spoofing","authors":"Balaji Rao Katika, K. Karthik","doi":"10.1186/s13635-022-00135-8","DOIUrl":"https://doi.org/10.1186/s13635-022-00135-8","url":null,"abstract":"","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2023 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43905356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust video steganography for social media sharing based on principal component analysis 基于主成分分析的社交媒体共享鲁棒视频隐写
IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2021-12-29 DOI: 10.21203/rs.3.rs-1109366/v1
Pingan Fan, Hong Zhang, Xianfeng Zhao
Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.
大多数社交媒体渠道都是有损的,其中视频被转编码以减少传输带宽或存储空间,例如社交网站和视频共享平台。视频转码使得大多数视频隐写方案无法用于基于社交媒体的隐藏通信。本文提出了针对视频转码的鲁棒视频隐写技术,以构建可靠的社交媒体渠道隐藏通信。提出了一种基于主成分分析的鲁棒嵌入区域选择策略。此外,生成侧信息来标记这些选定的区域。侧信息压缩是为了降低传输带宽成本而设计的。然后,将一个亮度分量和一个色度分量连接以嵌入秘密消息和侧信息,通知接收方正确的提取位置。为了提高我们提出的方法对各种视频转码机制的适用性,对视频进行了预处理。实验结果表明,该方法对视频转码具有较强的鲁棒性,对隐写分析具有较好的安全性能。与现有的一些方法相比,我们提出的方法在实现YouTube和Vimeo等社交媒体渠道上的隐藏通信方面具有更强的鲁棒性和可靠性。
{"title":"Robust video steganography for social media sharing based on principal component analysis","authors":"Pingan Fan, Hong Zhang, Xianfeng Zhao","doi":"10.21203/rs.3.rs-1109366/v1","DOIUrl":"https://doi.org/10.21203/rs.3.rs-1109366/v1","url":null,"abstract":"Most social media channels are lossy where videos are transcoded to reduce transmission bandwidth or storage space, such as social networking sites and video sharing platforms. Video transcoding makes most video steganographic schemes unusable for hidden communication based on social media. This paper proposes robust video steganography against video transcoding to construct reliable hidden communication on social media channels. A new strategy based on principal component analysis is provided to select robust embedding regions. Besides, side information is generated to label these selected regions. Side information compression is designed to reduce the transmission bandwidth cost. Then, one luminance component and one chrominance component are joined to embed secret messages and side information, notifying the receiver of correct extraction positions. Video preprocessing is conducted to improve the applicability of our proposed method to various video transcoding mechanisms. Experimental results have shown that our proposed method provides stronger robustness against video transcoding than other methods and achieves satisfactory security performance against steganalysis. Compared with some existing methods, our proposed method is more robust and reliable to realize hidden communication over social media channels, such as YouTube and Vimeo.","PeriodicalId":46070,"journal":{"name":"EURASIP Journal on Information Security","volume":"2022 1","pages":"1-19"},"PeriodicalIF":3.6,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48386677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
EURASIP Journal on Information Security
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1