首页 > 最新文献

Afrika Matematika最新文献

英文 中文
On fractional (p(z))-Laplacian problems with young measures 关于具有年轻测度的分数阶(p(z)) -拉普拉斯问题
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-11-20 DOI: 10.1007/s13370-025-01392-9
Hasna Moujani, Abderrazak Kassidi, Ali El Mfadel, M’hamed Elomari

The main crux of this manuscript is to study the existence of weak solutions for nonlinear elliptic Dirichlet boundary value problems with the fractional (p(z))-Laplacian operator. Applying Galerkin method and Young measures with variable exponent fractional Sobolev spaces, the existence of weak solutions of the proposed problem is established. Our results improve and extend upon a variety of current studies that have been carried out within the same area of academic research.

本文主要研究了具有分数阶(p(z)) -拉普拉斯算子的非线性椭圆型Dirichlet边值问题弱解的存在性。利用Galerkin方法和变指数分数Sobolev空间的Young测度,证明了该问题弱解的存在性。我们的结果改进和扩展了在同一学术研究领域内进行的各种当前研究。
{"title":"On fractional (p(z))-Laplacian problems with young measures","authors":"Hasna Moujani,&nbsp;Abderrazak Kassidi,&nbsp;Ali El Mfadel,&nbsp;M’hamed Elomari","doi":"10.1007/s13370-025-01392-9","DOIUrl":"10.1007/s13370-025-01392-9","url":null,"abstract":"<div><p>The main crux of this manuscript is to study the existence of weak solutions for nonlinear elliptic Dirichlet boundary value problems with the fractional <span>(p(z))</span>-Laplacian operator. Applying Galerkin method and Young measures with variable exponent fractional Sobolev spaces, the existence of weak solutions of the proposed problem is established. Our results improve and extend upon a variety of current studies that have been carried out within the same area of academic research.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145561385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implicit quiescent optical soliton perturbation having nonlinear chromatic dispersion and generalized temporal evolution with Kudryashov’s forms of self-phase modulation structure by Lie symmetry 具有非线性色散和广义时间演化的Kudryashov自相位调制结构形式的隐式静态光孤子微扰
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-11-11 DOI: 10.1007/s13370-025-01388-5
Abdullahi Rashid Adem, Yakup Yildirim, Luminita Moraru, Oswaldo González-Gaxiola, Anjan Biswas

The article investigates the nonlinear Schrödinger’s equation using nonlinear chromatic dispersion and a generalised temporal evolution. Lie symmetry retrieves quiescent optical solitons from the model. The solutions are implicit, with quadratures and expressed in terms of elliptic and periodic functions. The six self-phase modulation structures examined in this study were first introduced by Kudryashov.

本文利用非线性色散和广义时间演化理论研究了非线性Schrödinger方程。李对称从模型中检索静态光学孤子。解是隐式的,具有正交性,用椭圆函数和周期函数表示。本研究中检测的六种自相位调制结构是由Kudryashov首先介绍的。
{"title":"Implicit quiescent optical soliton perturbation having nonlinear chromatic dispersion and generalized temporal evolution with Kudryashov’s forms of self-phase modulation structure by Lie symmetry","authors":"Abdullahi Rashid Adem,&nbsp;Yakup Yildirim,&nbsp;Luminita Moraru,&nbsp;Oswaldo González-Gaxiola,&nbsp;Anjan Biswas","doi":"10.1007/s13370-025-01388-5","DOIUrl":"10.1007/s13370-025-01388-5","url":null,"abstract":"<div><p>The article investigates the nonlinear Schrödinger’s equation using nonlinear chromatic dispersion and a generalised temporal evolution. Lie symmetry retrieves quiescent optical solitons from the model. The solutions are implicit, with quadratures and expressed in terms of elliptic and periodic functions. The six self-phase modulation structures examined in this study were first introduced by Kudryashov.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01388-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145510737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bi-periodic Fibonacci and Lucas (2^k)-ons with q-integer components 具有q-整数分量的双周期Fibonacci和Lucas (2^k) -ons
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-11-04 DOI: 10.1007/s13370-025-01387-6
Hafize Gün, Sure Köme

Quantum calculus, which can be considered a generalization of classical calculus, is essential for many areas of mathematics. Recently, the work on quantum calculus and its applications to mathematics has increased significantly. This article investigates the connection between higher-dimensional algebraic structures and quantum calculus by considering q-biperiodic Fibonacci and q-biperiodic Lucas sequences in Cayley–Dickson algebras. In this article, we examine new relations between Cayley–Dickson algebras, which generalize complex numbers to higher dimensions by systematic doubling, and q-biperiodic Fibonacci and q-biperiodic Lucas sequences, using some useful notations from quantum calculus. We also present algebraic properties of q-biperiodic Fibonacci and q-biperiodic Lucas (2^k)-ons, binomial sums, generating functions and Binet formulas. Our approach not only extends current research on Cayley–Dickson structures but also provides q-analogues that can effectively address some mathematical problems.

量子微积分可以被认为是经典微积分的推广,在数学的许多领域都是必不可少的。近年来,量子微积分的研究及其在数学中的应用有了显著的发展。本文通过考虑Cayley-Dickson代数中的q-双周期Fibonacci序列和q-双周期Lucas序列,研究了高维代数结构与量子微积分之间的联系。在本文中,我们使用量子微积分中的一些有用的符号,研究了通过系统加倍将复数推广到高维的Cayley-Dickson代数与q-双周期Fibonacci和q-双周期Lucas序列之间的新关系。同时给出了q-双周期Fibonacci和q-双周期Lucas (2^k) -ons的代数性质、二项式和、生成函数和Binet公式。我们的方法不仅扩展了目前对Cayley-Dickson结构的研究,而且提供了可以有效解决一些数学问题的q-类似物。
{"title":"Bi-periodic Fibonacci and Lucas (2^k)-ons with q-integer components","authors":"Hafize Gün,&nbsp;Sure Köme","doi":"10.1007/s13370-025-01387-6","DOIUrl":"10.1007/s13370-025-01387-6","url":null,"abstract":"<div><p>Quantum calculus, which can be considered a generalization of classical calculus, is essential for many areas of mathematics. Recently, the work on quantum calculus and its applications to mathematics has increased significantly. This article investigates the connection between higher-dimensional algebraic structures and quantum calculus by considering <i>q</i>-biperiodic Fibonacci and <i>q</i>-biperiodic Lucas sequences in Cayley–Dickson algebras. In this article, we examine new relations between Cayley–Dickson algebras, which generalize complex numbers to higher dimensions by systematic doubling, and <i>q</i>-biperiodic Fibonacci and <i>q</i>-biperiodic Lucas sequences, using some useful notations from quantum calculus. We also present algebraic properties of <i>q</i>-biperiodic Fibonacci and <i>q</i>-biperiodic Lucas <span>(2^k)</span>-ons, binomial sums, generating functions and Binet formulas. Our approach not only extends current research on Cayley–Dickson structures but also provides <i>q</i>-analogues that can effectively address some mathematical problems.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145456169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hankel determinants of logarithmic coefficients for the class of bounded turning functions associated with Bell numbers 一类与贝尔数相关的有界转动函数的对数系数的汉克尔行列式
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-27 DOI: 10.1007/s13370-025-01390-x
Sevtap Sümer, Gizem Nur Tufan

In this paper, we first obtained some initial logarithmic coefficient bounds on a subclass of bounded turning functions associated with Bell numbers. For functions in this class, we determined the sharp bounds for the second Hankel determinant of logarithmic coefficients (H_{2,1}(F_{f}/2)) of bounded turning functions associated with Bell numbers. Furthermore, we calculated the bounds of third Hankel determinant of logarithmic coefficients (H_{3,1}(F_{f}/2)) of bounded turning functions subordinate to the function whose coefficients are Bell numbers. Finally, we calculated the third Hankel determinant of logarithmic coefficients of inverse functions.

本文首先得到了一类有界转动函数的初始对数系数界。对于这类函数,我们确定了与贝尔数相关的有界旋转函数的对数系数的第二个汉克尔行列式(H_{2,1}(F_{f}/2))的尖锐界。进一步,我们计算了系数为贝尔数的有界转弯函数的对数系数的第三汉克尔行列式(H_{3,1}(F_{f}/2))的界。最后,我们计算了反函数对数系数的第三汉克尔行列式。
{"title":"Hankel determinants of logarithmic coefficients for the class of bounded turning functions associated with Bell numbers","authors":"Sevtap Sümer,&nbsp;Gizem Nur Tufan","doi":"10.1007/s13370-025-01390-x","DOIUrl":"10.1007/s13370-025-01390-x","url":null,"abstract":"<div><p>In this paper, we first obtained some initial logarithmic coefficient bounds on a subclass of bounded turning functions associated with Bell numbers. For functions in this class, we determined the sharp bounds for the second Hankel determinant of logarithmic coefficients <span>(H_{2,1}(F_{f}/2))</span> of bounded turning functions associated with Bell numbers. Furthermore, we calculated the bounds of third Hankel determinant of logarithmic coefficients <span>(H_{3,1}(F_{f}/2))</span> of bounded turning functions subordinate to the function whose coefficients are Bell numbers. Finally, we calculated the third Hankel determinant of logarithmic coefficients of inverse functions.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Locally conformal almost cosymplectic manifolds and nullity distributions 局部共形几乎余辛流形与零分布
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-27 DOI: 10.1007/s13370-025-01391-w
Snethemba Hlobisile Maduna, Fortuné Massamba

This paper investigates the geometric implications of locally conformal almost cosymplectic structures on ((k, mu )')-spaces. We prove that there exist integrable distributions (mathcal {D}_{3}) and (mathcal {D}_{3}^{perp }) such that locally conformal almost cosymplectic ((k, mu )')-manifolds decompose locally as the Riemannian product of a totally geodesic manifold and a 2-dimensional totally geodesic surface with Gaussian curvature (-k).

研究了((k, mu )') -空间上局部共形几乎余辛结构的几何意义。我们证明了存在可积分布(mathcal {D}_{3})和(mathcal {D}_{3}^{perp }),使得局部共形几乎协辛((k, mu )') -流形局部分解为全测地线流形与具有高斯曲率的二维全测地线曲面(-k)的黎曼积。
{"title":"Locally conformal almost cosymplectic manifolds and nullity distributions","authors":"Snethemba Hlobisile Maduna,&nbsp;Fortuné Massamba","doi":"10.1007/s13370-025-01391-w","DOIUrl":"10.1007/s13370-025-01391-w","url":null,"abstract":"<div><p>This paper investigates the geometric implications of locally conformal almost cosymplectic structures on <span>((k, mu )')</span>-spaces. We prove that there exist integrable distributions <span>(mathcal {D}_{3})</span> and <span>(mathcal {D}_{3}^{perp })</span> such that locally conformal almost cosymplectic <span>((k, mu )')</span>-manifolds decompose locally as the Riemannian product of a totally geodesic manifold and a 2-dimensional totally geodesic surface with Gaussian curvature <span>(-k)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coefficient estimates for certain a new subclass of univalent functions associated with quotient of cosine hyperbolic and exponential functions 余弦双曲和指数函数商一元函数新子类的系数估计
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-27 DOI: 10.1007/s13370-025-01389-4
Trailokya Panigrahi, Shiba Prasad Dhal

In the proposed work, we introduce a new subclass of univalent analytic functions denoted by (mathcal {S}^{*}_{ChE}) defined in the open unit disk (mathbb { D}) with the help of subordination involving the quotient of the analytic representation of the cosine hyperbolic and exponential functions. For this function class, we determine sharp upper bounds of some of the initial coefficients, Fekete–Szegö functional and some sharp estimates of the Hankel determinant of different orders. Further, some sharp bounds of inverse and logarithmic coefficients, Zalcman and Krushkal inequalities are obtained for such a family. Our approach is based on the fact that the coefficients of functions in such a family and coefficients of corresponding Schwarz functions are interrelated. If we adopt this approach, exact estimate of the functional may easily be obtained. Furthermore, bounds for two-fold and three-fold symmetric functions belonging to said class are obtained.

本文利用余弦双曲函数和指数函数的解析表示的商的从属关系,在开单位盘(mathbb { D})上引入了一元解析函数的一个新的子类,表示为(mathcal {S}^{*}_{ChE})。对于这个函数类,我们确定了一些初始系数,Fekete-Szegö泛函和不同阶的Hankel行列式的锐估计的锐上界。进一步,得到了逆系数和对数系数的尖锐界、Zalcman不等式和Krushkal不等式。我们的方法是基于这样一个事实,即这样一个族中的函数的系数和相应的Schwarz函数的系数是相互关联的。如果我们采用这种方法,就很容易得到函数的精确估计。进一步,得到了属于上述类的二重对称函数和三重对称函数的界。
{"title":"Coefficient estimates for certain a new subclass of univalent functions associated with quotient of cosine hyperbolic and exponential functions","authors":"Trailokya Panigrahi,&nbsp;Shiba Prasad Dhal","doi":"10.1007/s13370-025-01389-4","DOIUrl":"10.1007/s13370-025-01389-4","url":null,"abstract":"<div><p>In the proposed work, we introduce a new subclass of univalent analytic functions denoted by <span>(mathcal {S}^{*}_{ChE})</span> defined in the open unit disk <span>(mathbb { D})</span> with the help of subordination involving the quotient of the analytic representation of the cosine hyperbolic and exponential functions. For this function class, we determine sharp upper bounds of some of the initial coefficients, Fekete–Szegö functional and some sharp estimates of the Hankel determinant of different orders. Further, some sharp bounds of inverse and logarithmic coefficients, Zalcman and Krushkal inequalities are obtained for such a family. Our approach is based on the fact that the coefficients of functions in such a family and coefficients of corresponding Schwarz functions are interrelated. If we adopt this approach, exact estimate of the functional may easily be obtained. Furthermore, bounds for two-fold and three-fold symmetric functions belonging to said class are obtained.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The classes and Fischer–Clifford matrices of extensions (p^{1+2n}{:}G) and their factor groups (p^{2n}{:}G) 扩展(p^{1+2n}{:}G)的类和Fischer-Clifford矩阵及其因子群 (p^{2n}{:}G)
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-27 DOI: 10.1007/s13370-025-01385-8
David Mwanzia Musyoka, Abraham Love Prins, Lydia Nyambura Njuguna, Lucy Chikamai

Let (overline{G}=p^{1+2n}{:}G) be a finite split extension of an extra-special p-group (P=p^{1+2n}) by a group G. Since the center Z(P) is characteristic in P and hence normal in (overline{G}), we can construct the factor group (overline{F}=frac{overline{G}}{Z(P)}cong p^{2n}{:}G), where (P_1=p^{2n}) is an elementary abelian p-group. In this paper, the Fischer–Clifford matrices M(g) of (overline{G}) are constructed from the corresponding Fischer–Clifford matrices (widehat{M(g)}) of (overline{F}) by a method we called the lifting of Fischer–Clifford matrices. As an example, the ordinary character table of a 7-local maximal subgroup (7_{+}^{1+4}{:}(3times 2 S_7)) of the Monster (mathbb {M}) is re-constructed using the lifting method.

设(overline{G}=p^{1+2n}{:}G)是一个特殊P群(P=p^{1+2n})被群g有限分裂扩展。由于中心Z(P)在P中是特征性的,因此在(overline{G})中是正规的,我们可以构造因子群(overline{F}=frac{overline{G}}{Z(P)}cong p^{2n}{:}G),其中(P_1=p^{2n})是一个初等阿贝尔P群。本文从(overline{F})的相应的fisher - clifford矩阵(widehat{M(g)})出发,用一种称为提升fisher - clifford矩阵的方法构造了(overline{G})的fisher - clifford矩阵M(g)。以Monster (mathbb {M})的一个7局部极大子群(7_{+}^{1+4}{:}(3times 2 S_7))的普通字符表为例,利用提升方法进行了重构。
{"title":"The classes and Fischer–Clifford matrices of extensions (p^{1+2n}{:}G) and their factor groups (p^{2n}{:}G)","authors":"David Mwanzia Musyoka,&nbsp;Abraham Love Prins,&nbsp;Lydia Nyambura Njuguna,&nbsp;Lucy Chikamai","doi":"10.1007/s13370-025-01385-8","DOIUrl":"10.1007/s13370-025-01385-8","url":null,"abstract":"<div><p>Let <span>(overline{G}=p^{1+2n}{:}G)</span> be a finite split extension of an extra-special <i>p</i>-group <span>(P=p^{1+2n})</span> by a group <i>G</i>. Since the center <i>Z</i>(<i>P</i>) is characteristic in <i>P</i> and hence normal in <span>(overline{G})</span>, we can construct the factor group <span>(overline{F}=frac{overline{G}}{Z(P)}cong p^{2n}{:}G)</span>, where <span>(P_1=p^{2n})</span> is an elementary abelian <i>p</i>-group. In this paper, the Fischer–Clifford matrices <i>M</i>(<i>g</i>) of <span>(overline{G})</span> are constructed from the corresponding Fischer–Clifford matrices <span>(widehat{M(g)})</span> of <span>(overline{F})</span> by a method we called the <i>lifting of Fischer–Clifford matrices</i>. As an example, the ordinary character table of a 7-local maximal subgroup <span>(7_{+}^{1+4}{:}(3times 2 S_7))</span> of the Monster <span>(mathbb {M})</span> is re-constructed using the <i>lifting</i> method.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01385-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145405795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repdigits in base b as product of two k-generalized Pell numbers 以b为基底的数字是两个k-广义佩尔数的乘积
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s13370-025-01384-9
Zafer Şiar

Let (kge 2) be an integer. The k-generalized Pell sequence ((P_{n}^{(k)})_{nge 2-k}) is defined by the initial values (0,0,ldots ,0,1)(k terms) and the recurrence (P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+ldots +P_{n-k}^{(k)}) for all (nge 2). In this study, we deal with the Diophantine equation

$$P_{n}^{(k)}P_{m}^{(k)}=dleft( frac{b^{l}-1}{b-1}right)$$

in positive integers nmkbdl with (kge 3,lge 2,~2le mle n,) (2le ble 10,) and (1le dle b-1,) and we show that all solutions of this equation are given by

$$begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}text { for }kge 3, P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}text { for }kge 4, end{aligned}$$

and

$$P_{5}^{(3)}P_{2}^{(3)}=left( 66right) _{10}.$$
设(kge 2)为整数。k广义Pell序列((P_{n}^{(k)})_{nge 2-k})由初始值(0,0,ldots ,0,1) (k项)和所有(nge 2)的递归式(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+ldots +P_{n-k}^{(k)})定义。在本研究中,我们用(kge 3,lge 2,~2le mle n,)(2le ble 10,)和(1le dle b-1,)处理了正整数n, m, k, b, d, l中的丢芬图方程$$P_{n}^{(k)}P_{m}^{(k)}=dleft( frac{b^{l}-1}{b-1}right)$$,并证明了该方程的所有解都由$$begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}text { for }kge 3, P_{5}^{(k)}P_{3}^{(k)}&=(2222)_{4}text { for }kge 4, end{aligned}$$和给出 $$P_{5}^{(3)}P_{2}^{(3)}=left( 66right) _{10}.$$
{"title":"Repdigits in base b as product of two k-generalized Pell numbers","authors":"Zafer Şiar","doi":"10.1007/s13370-025-01384-9","DOIUrl":"10.1007/s13370-025-01384-9","url":null,"abstract":"<div><p>Let <span>(kge 2)</span> be an integer. The <i>k</i>-generalized Pell sequence <span>((P_{n}^{(k)})_{nge 2-k})</span> is defined by the initial values <span>(0,0,ldots ,0,1)</span>(<i>k</i> terms) and the recurrence <span>(P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+ldots +P_{n-k}^{(k)})</span> for all <span>(nge 2)</span>. In this study, we deal with the Diophantine equation </p><div><div><span>$$P_{n}^{(k)}P_{m}^{(k)}=dleft( frac{b^{l}-1}{b-1}right)$$</span></div></div><p>in positive integers <i>n</i>, <i>m</i>, <i>k</i>, <i>b</i>, <i>d</i>, <i>l</i> with <span>(kge 3,lge 2,~2le mle n,)</span> <span>(2le ble 10,)</span> and <span>(1le dle b-1,)</span> and we show that all solutions of this equation are given by </p><div><div><span>$$begin{aligned} P_{2}^{(k)}P_{2}^{(k)}&amp;=(11)_{3},~P_{3}^{(k)}P_{2}^{(k)}=(22)_{4}=(11)_{9}text {, }P_{4}^{(k)}P_{2}^{(k)}=(222)_{3}text { for }kge 3, P_{5}^{(k)}P_{3}^{(k)}&amp;=(2222)_{4}text { for }kge 4, end{aligned}$$</span></div></div><p>and </p><div><div><span>$$P_{5}^{(3)}P_{2}^{(3)}=left( 66right) _{10}.$$</span></div></div></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rainbow connected number of several infinite graph families 若干无限图族的彩虹连通数
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s13370-025-01381-y
Liam B. Baker, Jonathan Kariv, Ronald J. Maartens

Let G be a nontrivial connected graph with an edge coloring, and let (u,v in V(G)). A (u-v) path in G is said to be a rainbow path if no color is repeated on the edges of the path. Similarly, we define a rainbow geodesic. A rainbow connected graph G is a graph with an edge coloring such that every two vertices in G are connected by a rainbow path. Further, a strong rainbow connected graph G is a graph with an edge coloring such that every two vertices in G is connected by a rainbow geodesic. The minimum number of colors needed to make a graph rainbow connected is called the rainbow connection number, denoted ({{,textrm{rc},}}(G)), and the minimum number of colors needed to make a graph strong rainbow connected is called the strong rainbow connection number, denoted ({{,textrm{src},}}(G)). In this paper we determine ({{,textrm{rc},}}(G)) and ({{,textrm{src},}}(G)) when G is a n-dimensional rectangular grid graph, triangular grid graph, hexagonal grid graph, and a (weak) Bruhat graph, respectively. We show for all these families that ({{,textrm{src},}}(G)={{,textrm{diam},}}(G)).

设G是一个边着色的非平凡连通图,设(u,v in V(G))。如果路径边缘没有重复的颜色,则G中的(u-v)路径被称为彩虹路径。同样,我们定义彩虹测地线。彩虹连通图G是一种具有边缘着色的图,使得G中的每两个顶点都通过彩虹路径连接。此外,强彩虹连通图G是具有边缘着色的图,使得G中的每两个顶点由彩虹测地线连接。使图形具有彩虹连接所需的最小颜色数称为彩虹连接数,记为({{,textrm{rc},}}(G)),而使图形具有强彩虹连接数所需的最小颜色数称为强彩虹连接数,记为({{,textrm{src},}}(G))。本文分别确定了当G为n维矩形网格图、三角形网格图、六边形网格图和(弱)Bruhat图时的({{,textrm{rc},}}(G))和({{,textrm{src},}}(G))。我们向所有这些家庭展示({{,textrm{src},}}(G)={{,textrm{diam},}}(G))。
{"title":"The rainbow connected number of several infinite graph families","authors":"Liam B. Baker,&nbsp;Jonathan Kariv,&nbsp;Ronald J. Maartens","doi":"10.1007/s13370-025-01381-y","DOIUrl":"10.1007/s13370-025-01381-y","url":null,"abstract":"<div><p>Let <i>G</i> be a nontrivial connected graph with an edge coloring, and let <span>(u,v in V(G))</span>. A <span>(u-v)</span> path in <i>G</i> is said to be a <i>rainbow path</i> if no color is repeated on the edges of the path. Similarly, we define a <i>rainbow geodesic</i>. A <i>rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> are connected by a rainbow path. Further, a <i>strong rainbow connected graph</i> <i>G</i> is a graph with an edge coloring such that every two vertices in <i>G</i> is connected by a rainbow geodesic. The minimum number of colors needed to make a graph rainbow connected is called the <i>rainbow connection number</i>, denoted <span>({{,textrm{rc},}}(G))</span>, and the minimum number of colors needed to make a graph strong rainbow connected is called the <i>strong rainbow connection number</i>, denoted <span>({{,textrm{src},}}(G))</span>. In this paper we determine <span>({{,textrm{rc},}}(G))</span> and <span>({{,textrm{src},}}(G))</span> when <i>G</i> is a <i>n</i>-dimensional rectangular grid graph, triangular grid graph, hexagonal grid graph, and a (weak) Bruhat graph, respectively. We show for all these families that <span>({{,textrm{src},}}(G)={{,textrm{diam},}}(G))</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01381-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small energy and Hosoya index among caterpillars with a given degree sequence 毛虫的能量和细谷指数在一定程度序列下较小
IF 0.7 Q2 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s13370-025-01382-x
Eric O. D. Andriantiana, Xhanti Sinoxolo

The energy En(G) of a graph G is defined as the sum of the absolute values of its eigenvalues. The Hosoya index Z(G) of a graph G is the number of independent edge subsets of G, including the empty set. For any given degree sequence D, we characterize the caterpillar (mathcal {S}(D)) that has the minimum Z and En. We also show that (Z(mathcal {S}(D))<Z(mathcal {S}(Y))) and (En(mathcal {S}(D))<En(mathcal {S}(Y))) for any degree sequences (Y=(y_1,dots ,y_n)) and (D=(d_1,dots ,d_n)) with

$$sum _{i=1}^{n}y_i=sum _{i=1}^{n}d_itext { and }sum _{i=1}^{k}y_ile sum _{i=1}^{k}d_i text { for all }1le k le n.$$
图G的能量En(G)定义为其特征值的绝对值之和。图G的细谷指数Z(G)是图G的独立边子集的个数,包括空集。对于任意给定的度序列D,我们描述具有最小Z和最小En的毛虫(mathcal {S}(D))。我们还证明了(Z(mathcal {S}(D))<Z(mathcal {S}(Y)))和(En(mathcal {S}(D))<En(mathcal {S}(Y)))对于任何阶序列(Y=(y_1,dots ,y_n))和(D=(d_1,dots ,d_n))$$sum _{i=1}^{n}y_i=sum _{i=1}^{n}d_itext { and }sum _{i=1}^{k}y_ile sum _{i=1}^{k}d_i text { for all }1le k le n.$$
{"title":"Small energy and Hosoya index among caterpillars with a given degree sequence","authors":"Eric O. D. Andriantiana,&nbsp;Xhanti Sinoxolo","doi":"10.1007/s13370-025-01382-x","DOIUrl":"10.1007/s13370-025-01382-x","url":null,"abstract":"<div><p>The energy <i>En</i>(<i>G</i>) of a graph <i>G</i> is defined as the sum of the absolute values of its eigenvalues. The Hosoya index <i>Z</i>(<i>G</i>) of a graph <i>G</i> is the number of independent edge subsets of <i>G</i>, including the empty set. For any given degree sequence <i>D</i>, we characterize the caterpillar <span>(mathcal {S}(D))</span> that has the minimum <i>Z</i> and <i>En</i>. We also show that <span>(Z(mathcal {S}(D))&lt;Z(mathcal {S}(Y)))</span> and <span>(En(mathcal {S}(D))&lt;En(mathcal {S}(Y)))</span> for any degree sequences <span>(Y=(y_1,dots ,y_n))</span> and <span>(D=(d_1,dots ,d_n))</span> with </p><div><div><span>$$sum _{i=1}^{n}y_i=sum _{i=1}^{n}d_itext { and }sum _{i=1}^{k}y_ile sum _{i=1}^{k}d_i text { for all }1le k le n.$$</span></div></div></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-025-01382-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145256184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Afrika Matematika
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1